Liu Din Goa, Chang Chien Hung, Liu Chin Yen, Chang Shih Hung, Juang Jwei Ming, Song Yen Fang, Yu Kuan Li, Liao Kuei Fen, Hwang Ching Shiang, Fung Hok Sum, Tseng Ping Chung, Huang Chi Yi, Huang Liang Jen, Chung Shih Chun, Tang Mau Tsu, Tsang King Long, Huang Yu Shan, Kuan Chien Kuang, Liu Yi Chih, Liang Keng S, Jeng U Ser
National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.
J Synchrotron Radiat. 2009 Jan;16(Pt 1):97-104. doi: 10.1107/S0909049508034134. Epub 2008 Nov 14.
At the National Synchrotron Radiation Research Center (NSRRC), which operates a 1.5 GeV storage ring, a dedicated small-angle X-ray scattering (SAXS) beamline has been installed with an in-achromat superconducting wiggler insertion device of peak magnetic field 3.1 T. The vertical beam divergence from the X-ray source is reduced significantly by a collimating mirror. Subsequently the beam is selectively monochromated by a double Si(111) crystal monochromator with high energy resolution (DeltaE/E approximately 2 x 10(-4)) in the energy range 5-23 keV, or by a double Mo/B4C multilayer monochromator for 10-30 times higher flux ( approximately 10(11) photons s(-1)) in the 6-15 keV range. These two monochromators are incorporated into one rotating cradle for fast exchange. The monochromated beam is focused by a toroidal mirror with 1:1 focusing for a small beam divergence and a beam size of approximately 0.9 mm x 0.3 mm (horizontal x vertical) at the focus point located 26.5 m from the radiation source. A plane mirror installed after the toroidal mirror is selectively used to deflect the beam downwards for grazing-incidence SAXS (GISAXS) from liquid surfaces. Two online beam-position monitors separated by 8 m provide an efficient feedback control for an overall beam-position stability in the 10 microm range. The beam features measured, including the flux density, energy resolution, size and divergence, are consistent with those calculated using the ray-tracing program SHADOW. With the deflectable beam of relatively high energy resolution and high flux, the new beamline meets the requirements for a wide range of SAXS applications, including anomalous SAXS for multiphase nanoparticles (e.g. semiconductor core-shell quantum dots) and GISAXS from liquid surfaces.
在运行1.5 GeV储存环的国家同步辐射研究中心(NSRRC),已安装了一条专用的小角X射线散射(SAXS)光束线,该光束线配备了一个峰值磁场为3.1 T的消色差超导摆动器插入装置。通过准直镜可显著降低来自X射线源的垂直光束发散角。随后,光束由一个双Si(111)晶体单色器在5 - 23 keV能量范围内进行选择性单色化,该单色器具有高能量分辨率(ΔE/E约为2×10⁻⁴),或者由一个双Mo/B₄C多层单色器在6 - 15 keV范围内提供高10 - 30倍的通量(约10¹¹光子 s⁻¹)。这两个单色器被安装在一个旋转支架中以便快速更换。单色化后的光束由一个环形镜聚焦,该环形镜具有1:1聚焦,适用于小光束发散角,在距离辐射源26.5 m处的焦点处光束尺寸约为0.9 mm×0.3 mm(水平×垂直)。安装在环形镜之后的平面镜可选择性地用于使光束向下偏转,以进行来自液体表面的掠入射SAXS(GISAXS)。两个相距8 m的在线光束位置监测器为在10微米范围内的整体光束位置稳定性提供了有效的反馈控制。所测量的光束特性,包括通量密度、能量分辨率、尺寸和发散角,与使用射线追踪程序SHADOW计算的结果一致。凭借具有相对高能量分辨率和高通量的可偏转光束,这条新光束线满足了广泛SAXS应用的要求,包括用于多相纳米颗粒(如半导体核壳量子点)的反常SAXS以及来自液体表面的GISAXS。