Suppr超能文献

球蟒心脏的功能形态与血流模式

Functional morphology and patterns of blood flow in the heart of Python regius.

作者信息

Starck J Matthias

机构信息

Department of Biology II, Biocenter Martinsried, University of Munich (LMU), Planegg-Martinsried, Germany.

出版信息

J Morphol. 2009 Jun;270(6):673-87. doi: 10.1002/jmor.10706.

Abstract

Brightness-modulated ultrasonography, continuous-wave Doppler, and pulsed-wave Doppler-echocardiography were used to analyze the functional morphology of the undisturbed heart of ball pythons. In particular, the action of the muscular ridge and the atrio-ventricular valves are key features to understand how patterns of blood flow emerge from structures directing blood into the various chambers of the heart. A step-by-step image analysis of echocardiographs shows that during ventricular diastole, the atrio-ventricular valves block the interventricular canals so that blood from the right atrium first fills the cavum venosum, and blood from the left atrium fills the cavum arteriosum. During diastole, blood from the cavum venosum crosses the muscular ridge into the cavum pulmonale. During middle to late systole the muscular ridge closes, thus prohibiting further blood flow into the cavum pulmonale. At the same time, the atrio-ventricular valves open the interventricular canal and allow blood from the cavum arteriosum to flow into the cavum venosum. In the late phase of ventricular systole, all blood from the cavum pulmonale is pressed into the pulmonary trunk; all blood from the cavum venosum is pressed into both aortas. Quantitative measures of blood flow volume showed that resting snakes bypass the pulmonary circulation and shunt about twice the blood volume into the systemic circulation as into the pulmonary circulation. When digesting, the oxygen demand of snakes increased tremendously. This is associated with shunting more blood into the pulmonary circulation. The results of this study allow the presentation of a detailed functional model of the python heart. They are also the basis for a functional hypothesis of how shunting is achieved. Further, it was shown that shunting is an active regulation process in response to changing demands of the organism (here, oxygen demand). Finally, the results of this study support earlier reports about a dual pressure circulation in Python regius.

摘要

采用亮度调制超声心动图、连续波多普勒和脉冲波多普勒超声心动图分析了球蟒未受干扰心脏的功能形态。特别是,肌嵴和房室瓣的作用是理解血流模式如何从引导血液进入心脏各个腔室的结构中产生的关键特征。超声心动图的逐步图像分析表明,在心室舒张期,房室瓣阻塞室间通道,使来自右心房的血液首先充满静脉腔,来自左心房的血液充满动脉腔。在舒张期,来自静脉腔的血液穿过肌嵴进入肺腔。在收缩中期至晚期,肌嵴关闭,从而阻止血液进一步流入肺腔。与此同时,房室瓣打开室间通道,使来自动脉腔的血液流入静脉腔。在心室收缩后期,来自肺腔的所有血液被压入肺动脉干;来自静脉腔的所有血液被压入两条主动脉。血流量的定量测量表明,静息状态下的蛇绕过肺循环,分流到体循环的血量约为肺循环的两倍。在消化时,蛇的氧气需求量大幅增加。这与更多血液分流到肺循环有关。这项研究的结果有助于呈现蟒蛇心脏的详细功能模型。它们也是关于如何实现分流的功能假设的基础。此外,研究表明分流是一种响应机体变化需求(此处为氧气需求)的主动调节过程。最后,这项研究的结果支持了关于皇蟒双重压力循环的早期报道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验