Suppr超能文献

用于超极化气体磁共振成像的射频发射器电压校准

Calibration of RF transmitter voltages for hyperpolarized gas MRI.

作者信息

Bashir Adil, Conradi Mark S, Woods Jason C, Quirk James D, Yablonskiy Ddmitriy A

机构信息

Mallinckrodt Institute of Radiology, St. Louis, Missouri 63110, USA.

出版信息

Magn Reson Med. 2009 Jan;61(1):239-43. doi: 10.1002/mrm.21821.

Abstract

MRI with hyperpolarized gases, (3)He, (129)Xe, (13)C, and others, has the potential to become an important diagnostic technique for clinical imaging. Due to the nonreversible loss of magnetization in hyperpolarized gas imaging, the choice of the flip angle is a major factor that influences the signal intensity, and hence, the signal-to-noise ratio. Conventional automated radiofrequency (RF) calibration procedures for (1)H imaging are not suitable for hyperpolarized gas imaging. Herein, we have demonstrated a simple procedure for RF calibration for magnetic resonance imaging (MRI) with hyperpolarized gases that is easily adaptable to clinical settings. We have demonstrated that there exists a linear relationship between the RF transmitter voltages required to obtain the same nutation angle for protons (V(1H)) and hyperpolarized gas nuclei (V(3He)). For our (1)H and (3)He coils we found that V(3He) = 1.937 . V(1H) with correlation coefficient r(2) = 0.97. This calibration can be done as a one-time procedure during the routine quality assurance (QA) protocol. The proposed procedure was found to be extremely robust in routine scanning and provided an efficient method to achieve a desired flip angle, thus allowing optimum image quality.

摘要

使用超极化气体(如³He、¹²⁹Xe、¹³C等)的磁共振成像(MRI)有潜力成为临床成像的一项重要诊断技术。由于超极化气体成像中磁化强度的不可逆损失,翻转角的选择是影响信号强度进而影响信噪比的主要因素。传统的¹H成像自动射频(RF)校准程序不适用于超极化气体成像。在此,我们展示了一种用于超极化气体磁共振成像(MRI)的简单RF校准程序,该程序易于应用于临床环境。我们证明,对于质子(V(¹H))和超极化气体原子核(V(³He)),获得相同章动角所需的RF发射机电压之间存在线性关系。对于我们的¹H和³He线圈,我们发现V(³He) = 1.937·V(¹H),相关系数r² = 0.97。这种校准可以在常规质量保证(QA)协议期间作为一次性程序完成。所提出的程序在常规扫描中被发现极其稳健,并提供了一种实现所需翻转角的有效方法,从而实现最佳图像质量。

相似文献

1
Calibration of RF transmitter voltages for hyperpolarized gas MRI.
Magn Reson Med. 2009 Jan;61(1):239-43. doi: 10.1002/mrm.21821.
3
K-space filter deconvolution and flip angle self-calibration in 2D radial hyperpolarised 3He lung MRI.
NMR Biomed. 2012 Feb;25(2):389-99. doi: 10.1002/nbm.1766. Epub 2011 Aug 11.
5
MRI using hyperpolarized noble gases.
Eur Radiol. 1998;8(5):820-7. doi: 10.1007/s003300050479.
6
Asymmetric quadrature split birdcage coil for hyperpolarized 3He lung MRI at 1.5T.
Magn Reson Med. 2008 Aug;60(2):431-8. doi: 10.1002/mrm.21664.
7
Development of hyperpolarized noble gas MRI.
Nucl Instrum Methods Phys Res A. 1998;402:441-53. doi: 10.1016/s0168-9002(97)00888-7.
8
Image-guided radio-frequency gain calibration for high-field MRI.
NMR Biomed. 2010 May;23(4):368-74. doi: 10.1002/nbm.1471. Epub 2009 Dec 15.
9
Variable flip angle schedules in bSSFP imaging of hyperpolarized noble gases.
Magn Reson Med. 2012 Jun;67(6):1656-64. doi: 10.1002/mrm.23155. Epub 2011 Aug 29.
10
An open-access, very-low-field MRI system for posture-dependent 3He human lung imaging.
J Magn Reson. 2008 Aug;193(2):274-85. doi: 10.1016/j.jmr.2008.05.016. Epub 2008 May 24.

引用本文的文献

1
Evaluation of an integrated variable flip angle protocol to estimate coil B for hyperpolarized MRI.
Magn Reson Med. 2025 Apr;93(4):1615-1628. doi: 10.1002/mrm.30378. Epub 2024 Nov 17.
2
A Framework for Predicting X-Nuclei Transmitter Gain Using H Signal.
Tomography. 2023 Aug 24;9(5):1603-1616. doi: 10.3390/tomography9050128.
3
Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei.
MAGMA. 2020 Apr;33(2):221-256. doi: 10.1007/s10334-019-00807-6. Epub 2019 Dec 6.
5
Measuring B1 distributions by B1 phase encoding.
Magn Reson Med. 2017 Jan;77(1):229-236. doi: 10.1002/mrm.26114. Epub 2016 Jan 17.
6
Experimental evidence of age-related adaptive changes in human acinar airways.
J Appl Physiol (1985). 2016 Jan 15;120(2):159-65. doi: 10.1152/japplphysiol.00541.2015. Epub 2015 Nov 5.
7
Probing lung microstructure with hyperpolarized 3He gradient echo MRI.
NMR Biomed. 2014 Dec;27(12):1451-60. doi: 10.1002/nbm.3150. Epub 2014 Jun 11.
8
In vivo lung morphometry with accelerated hyperpolarized (3) He diffusion MRI: a preliminary study.
Magn Reson Med. 2015 Apr;73(4):1609-14. doi: 10.1002/mrm.25284. Epub 2014 May 5.
10
Rapid B1 mapping using orthogonal, equal-amplitude radio-frequency pulses.
Magn Reson Med. 2012 Mar;67(3):718-23. doi: 10.1002/mrm.23051. Epub 2011 Jun 28.

本文引用的文献

1
In vivo lung morphometry with hyperpolarized 3He diffusion MRI: theoretical background.
J Magn Reson. 2008 Feb;190(2):200-10. doi: 10.1016/j.jmr.2007.10.015. Epub 2007 Nov 1.
2
Optimum pulse flip angles for multi-scan acquisition of hyperpolarized NMR and MRI.
J Magn Reson. 2008 Feb;190(2):183-8. doi: 10.1016/j.jmr.2007.10.011. Epub 2007 Oct 30.
3
Functional lung imaging using hyperpolarized gas MRI.
J Magn Reson Imaging. 2007 May;25(5):910-23. doi: 10.1002/jmri.20876.
4
Advances in magnetic resonance imaging of lung physiology.
J Appl Physiol (1985). 2007 Mar;102(3):1244-54. doi: 10.1152/japplphysiol.00738.2006. Epub 2006 Dec 7.
6
Hyperpolarized media MR imaging--expanding the boundaries?
Acad Radiol. 2006 Aug;13(8):929-31. doi: 10.1016/j.acra.2006.06.002.
8
Hyperpolarized 3-helium magnetic resonance imaging to probe lung function.
Proc Am Thorac Soc. 2005;2(6):528-32, 510. doi: 10.1513/pats.200507-071DS.
9
Measurements of regional alveolar oxygen pressure using hyperpolarized 3He MRI.
Acad Radiol. 2005 Nov;12(11):1430-9. doi: 10.1016/j.acra.2005.07.007.
10
3He diffusion MRI of the lung.
Acad Radiol. 2005 Nov;12(11):1406-13. doi: 10.1016/j.acra.2005.07.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验