Kauczor H, Surkau R, Roberts T
Department of Radiology, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, D-55 131 Mainz, Germany.
Eur Radiol. 1998;8(5):820-7. doi: 10.1007/s003300050479.
The aim of this study was to review the physical basis of MRI using hyperpolarized noble gases as well as the present status of preclinical and clinical applications. Non-radioactive noble gases with a nuclear spin 1/2 (He-3, Xe-129) can be hyperpolarized by optical pumping. Polarization is transferred from circularly polarized laser light to the noble-gas atoms via alkali-metal vapors (spin exchange) or metastable atoms (metastability exchange). Hyperpolarization results in a non-equilibrium polarization five orders of magnitude higher than the Boltzmann equilibrium compensating for the several 1000 times lower density of noble gases as compared with liquid state hydrogen concentrations in tissue and allows for short imaging times. Hyperpolarization can be stored sufficiently long (3 h to 6 days) to allow for transport and application. Magnetic resonance systems require a broadband radio-frequency system - which is generally available for MR spectroscopy - and dedicated coils. The hyperpolarized gases are administered as inhalative "contrast agents" allowing for imaging of the airways and airspaces. Besides the known anesthetic effect of xenon, no adverse effects are observed in volunteers or patients. Pulse sequences are optimized to effectively use the non-renewable hyperpolarization before it decays or is destroyed, using fast low-flip-angles strategies to allow for dynamic/breath-hold imaging of highly diffusible (He) or soluble (Xe) gases with in vivo T1-times well below 1 min. Since helium is not absorbed in considerable amounts, its application is restricted to the lung. Xe-129 is also under investigation for imaging of white matter disease and functional studies of cerebral perfusion. Magnetic resonance imaging using hyperpolarized gases is emerging as a technical challenge and opportunity for the MR community. Preliminary experience suggests potential for functional imaging of pulmonary ventilation and cerebral perfusion.
本研究的目的是回顾使用超极化惰性气体进行磁共振成像(MRI)的物理基础以及临床前和临床应用的现状。具有核自旋1/2的非放射性惰性气体(氦-3、氙-129)可通过光泵浦实现超极化。极化通过碱金属蒸气(自旋交换)或亚稳态原子(亚稳态交换)从圆偏振激光转移到惰性气体原子。超极化导致非平衡极化比玻尔兹曼平衡高五个数量级,弥补了与组织中液态氢浓度相比惰性气体密度低数千倍的不足,并允许短成像时间。超极化可以储存足够长的时间(3小时至6天)以允许运输和应用。磁共振系统需要一个宽带射频系统——这通常可用于磁共振波谱——以及专用线圈。超极化气体作为吸入性“造影剂”给药,可对气道和空域进行成像。除了已知的氙的麻醉作用外,在志愿者或患者中未观察到不良反应。脉冲序列经过优化,以便在超极化衰减或被破坏之前有效利用这种不可再生的超极化,采用快速低翻转角策略,对体内T1时间远低于1分钟的高扩散性(氦)或可溶性(氙)气体进行动态/屏气成像。由于氦的吸收量不大,其应用仅限于肺部。氙-129也正在用于白质疾病成像和脑灌注功能研究。使用超极化气体的磁共振成像正在成为磁共振领域的一项技术挑战和机遇。初步经验表明,其在肺通气和脑灌注功能成像方面具有潜力。