Suppr超能文献

关于液-真空界面静电势差的起源

On the origin of the electrostatic potential difference at a liquid-vacuum interface.

作者信息

Harder Edward, Roux Benoît

机构信息

Department of Biochemistry and Molecular Biology, Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, USA.

出版信息

J Chem Phys. 2008 Dec 21;129(23):234706. doi: 10.1063/1.3027513.

Abstract

The microscopic origin of the interface potential calculated from computer simulations is elucidated by considering a simple model of molecules near an interface. The model posits that molecules are isotropically oriented and their charge density is Gaussian distributed. Molecules that have a charge density that is more negative toward their interior tend to give rise to a negative interface potential relative to the gaseous phase, while charge densities more positive toward their interior give rise to a positive interface potential. The interface potential for the model is compared to the interface potential computed from molecular dynamics simulations of the nonpolar vacuum-methane system and the polar vacuum-water interface system. The computed vacuum-methane interface potential from a molecular dynamics simulation (-220 mV) is captured with quantitative precision by the model. For the vacuum-water interface system, the model predicts a potential of -400 mV compared to -510 mV, calculated from a molecular dynamics simulation. The physical implications of this isotropic contribution to the interface potential is examined using the example of ion solvation in liquid methane.

摘要

通过考虑界面附近分子的简单模型,阐明了从计算机模拟计算得到的界面电势的微观起源。该模型假定分子呈各向同性取向,且其电荷密度呈高斯分布。那些电荷密度向其内部更负的分子相对于气相往往会产生负的界面电势,而电荷密度向其内部更正的分子则会产生正的界面电势。将该模型的界面电势与从非极性真空 - 甲烷系统和极性真空 - 水界面系统的分子动力学模拟计算得到的界面电势进行比较。分子动力学模拟计算得到的真空 - 甲烷界面电势(-220 mV)被该模型以定量精度捕捉到。对于真空 - 水界面系统,该模型预测的电势为 -400 mV,而分子动力学模拟计算得到的为 -510 mV。以液态甲烷中离子溶剂化为例,研究了这种各向同性对界面电势贡献的物理意义。

相似文献

1
On the origin of the electrostatic potential difference at a liquid-vacuum interface.
J Chem Phys. 2008 Dec 21;129(23):234706. doi: 10.1063/1.3027513.
5
Hydrophobic and ionic interactions in nanosized water droplets.
J Am Chem Soc. 2006 Oct 18;128(41):13490-6. doi: 10.1021/ja063445h.
6
The Role of Surface Chemistry in the Orientational Behavior of Water at an Interface.
J Phys Chem B. 2022 Jun 30;126(25):4697-4710. doi: 10.1021/acs.jpcb.2c01752. Epub 2022 Jun 21.
7
On the fluctuations that drive small ions toward, and away from, interfaces between polar liquids and their vapors.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15125-30. doi: 10.1073/pnas.0905168106. Epub 2009 Aug 31.
10
Ionic solvation studied by image-charge reaction field method.
J Chem Phys. 2011 Jan 28;134(4):044105. doi: 10.1063/1.3530094.

引用本文的文献

2
Multiscale Modeling of Aqueous Electric Double Layers.
Chem Rev. 2024 Jan 10;124(1):1-26. doi: 10.1021/acs.chemrev.3c00307. Epub 2023 Dec 20.
3
Galvani Offset Potential and Constant-pH Simulations of Membrane Proteins.
J Phys Chem B. 2022 Sep 15;126(36):6868-6877. doi: 10.1021/acs.jpcb.2c04593. Epub 2022 Sep 1.
5
Uncovering Differences in Hydration Free Energies and Structures for Model Compound Mimics of Charged Side Chains of Amino Acids.
J Phys Chem B. 2021 Apr 29;125(16):4148-4161. doi: 10.1021/acs.jpcb.1c01073. Epub 2021 Apr 20.
6
Absolute ion hydration free energy scale and the surface potential of water via quantum simulation.
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30151-30158. doi: 10.1073/pnas.2017214117. Epub 2020 Nov 17.
8
Electrostatic solvation and mobility in uniform and non-uniform electric fields: From simple ions to proteins.
Biomicrofluidics. 2019 Nov 7;13(6):064106. doi: 10.1063/1.5124390. eCollection 2019 Nov.
9
Isothermal Titration Calorimetry of Be with Phosphatidylserine Models Guides All-Atom Force-Field Development for Lipid-Ion Interactions.
J Phys Chem B. 2019 Feb 21;123(7):1554-1565. doi: 10.1021/acs.jpcb.8b11884. Epub 2019 Feb 8.
10
Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator.
J Chem Inf Model. 2018 May 29;58(5):993-1004. doi: 10.1021/acs.jcim.8b00132. Epub 2018 Apr 17.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Altering the activity of syringomycin E via the membrane dipole potential.
Langmuir. 2008 Apr 1;24(7):2987-91. doi: 10.1021/la800206v. Epub 2008 Mar 7.
5
Hydrogen-bond dynamics in the air-water interface.
J Phys Chem B. 2005 Feb 24;109(7):2949-55. doi: 10.1021/jp046807l.
8
Specific ion effects at the air/water interface.
Chem Rev. 2006 Apr;106(4):1259-81. doi: 10.1021/cr0403741.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验