Chabwine J N, Talavera K, Verbert L, Eggermont J, Vanderwinden J-M, De Smedt H, Van Den Bosch L, Robberecht W, Callewaert G
Department of Molecular and Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium.
FASEB J. 2009 Apr;23(4):1168-76. doi: 10.1096/fj.08-116012. Epub 2008 Dec 22.
Plasma membrane chloride (Cl(-)) pathways play an important role in neuronal physiology. Here, we investigated the role of NKCC1 cotransporters (a secondary active Cl(-) uptake mechanism) in Cl(-) handling in cultured rat dorsal root ganglion neurons (DRGNs) and motor neurons (MNs) derived from fetal stage embryonic day 14. Gramicidin-perforated patch-clamp recordings revealed that DRGNs accumulate intracellular Cl(-) through a bumetanide- and Na(+)-sensitive mechanism, indicative of the functional expression of NKCC1. Western blotting confirmed the expression of NKCC1 in both DRGNs and MNs, but immunocytochemistry experiments showed a restricted expression in dendrites of MNs, which contrasts with a homogeneous expression in DRGNs. Both MNs and DRGNs could be readily loaded with or depleted of Cl(-) during GABA(A) receptor activation at depolarizing or hyperpolarizing membrane potentials. After loading, the rate of recovery to the resting Cl(-) concentration (i.e., Cl(-) decrease) was similar in both cell types and was unaffected by lowering the extracellular Na(+) concentration. In contrast, the recovery on depletion (i.e., Cl(-) increase) was significantly faster in DRGNs in control conditions but not in low extracellular Na(+). The experimental observations could be reproduced by a mathematical model for intracellular Cl(-) kinetics, in which DRGNs show higher NKCC1 activity and smaller Cl(-)-handling volume than MNs. On the basis of these results, we conclude that embryonic DRGNs show a higher somatic functional expression of NKCC1 than embryonic MNs. The high NKCC1 activity in DRGNs is important for maintaining high Cl(-), whereas lower NKCC1 activity in MNs allows large Cl(-) variations during neuronal activity.
质膜氯离子(Cl(-))转运途径在神经元生理学中起着重要作用。在此,我们研究了钠钾氯共转运体1(NKCC1,一种继发性主动Cl(-)摄取机制)在源自胚胎第14天胎儿期的培养大鼠背根神经节神经元(DRGNs)和运动神经元(MNs)的Cl(-)处理中的作用。短杆菌肽穿孔膜片钳记录显示,DRGNs通过一种布美他尼和Na(+)敏感机制积累细胞内Cl(-),这表明NKCC1具有功能表达。蛋白质免疫印迹法证实了NKCC1在DRGNs和MNs中的表达,但免疫细胞化学实验显示其在MNs的树突中表达受限,这与在DRGNs中的均匀表达形成对比。在去极化或超极化膜电位下激活GABA(A)受体期间,MNs和DRGNs都能很容易地加载或耗尽Cl(-)。加载后,两种细胞类型恢复到静息Cl(-)浓度(即[Cl(-)]i降低)的速率相似,且不受细胞外Na(+)浓度降低的影响。相比之下,在对照条件下,DRGNs中耗尽后的恢复(即[Cl(-)]i增加)明显更快,但在低细胞外Na(+)条件下则不然。这些实验观察结果可以通过细胞内Cl(-)动力学的数学模型重现,其中DRGNs显示出比MNs更高的NKCC1活性和更小的Cl(-)处理量。基于这些结果,我们得出结论,胚胎DRGNs比胚胎MNs表现出更高的NKCC1体细胞功能表达。DRGNs中高NKCC1活性对于维持高[Cl(-)]i很重要,而MNs中较低的NKCC1活性允许在神经元活动期间[Cl(-)]i有较大变化。