Dedkova Elena N, Blatter Lothar A
Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA.
J Physiol. 2009 Feb 15;587(Pt 4):851-72. doi: 10.1113/jphysiol.2008.165423. Epub 2008 Dec 22.
We used laser scanning confocal microscopy in combination with the nitric oxide (NO)-sensitive fluorescent dye DAF-2 and the reactive oxygen species (ROS)-sensitive dyes CM-H(2)DCF and MitoSOX Red to characterize NO and ROS production by mitochondrial NO synthase (mtNOS) in permeabilized cat ventricular myocytes. Stimulation of mitochondrial Ca(2+) uptake by exposure to different cytoplasmic Ca(2+) concentrations (Ca(2+) = 1, 2 and 5 microm) resulted in a dose-dependent increase of NO production by mitochondria when L-arginine, a substrate for mtNOS, was present. Collapsing the mitochondrial membrane potential with the protonophore FCCP or blocking the mitochondrial Ca(2+) uniporter with Ru360 as well as blocking the respiratory chain with rotenone or antimycin A in combination with oligomycin inhibited mitochondrial NO production. In the absence of L-arginine, mitochondrial NO production during stimulation of Ca(2+) uptake was significantly decreased, but accompanied by increase in mitochondrial ROS production. Inhibition of mitochondrial arginase to limit L-arginine availability resulted in 50% inhibition of Ca(2+)-induced ROS production. Both mitochondrial NO and ROS production were blocked by the nNOS inhibitor (4S)-N-(4-amino-5[aminoethyl]aminopentyl)-N'-nitroguanidine and the calmodulin antagonist W-7, while the eNOS inhibitor L-N(5)-(1-iminoethyl)ornithine (L-NIO) or iNOS inhibitor N-(3-aminomethyl)benzylacetamidine, 2HCl (1400W) had no effect. The superoxide dismutase mimetic and peroxynitrite scavenger MnTBAP abolished Ca(2+)-induced ROS generation and increased NO production threefold, suggesting that in the absence of MnTBAP either formation of superoxide radicals suppressed NO production or part of the formed NO was transformed quickly to peroxynitrite. In the absence of L-arginine, mitochondrial Ca(2+) uptake induced opening of the mitochondrial permeability transition pore (PTP), which was blocked by the PTP inhibitor cyclosporin A and MnTBAP, and reversed by L-arginine supplementation. In the presence of the mtNOS cofactor (6R)-5,6,7,8,-tetrahydrobiopterin (BH(4); 100 microm) mitochondrial ROS generation and PTP opening decreased while mitochondrial NO generation slightly increased. These data demonstrate that mitochondrial Ca(2+) uptake activates mtNOS and leads to NO-mediated protection against opening of the mitochondrial PTP, provided sufficient availability of l-arginine and BH(4). In conclusion, our data show the importance of L-arginine and BH(4) for cardioprotection via regulation of mitochondrial oxidative stress and modulation of PTP opening by mtNOS.
我们使用激光扫描共聚焦显微镜,结合一氧化氮(NO)敏感荧光染料DAF-2以及活性氧(ROS)敏感染料CM-H₂DCF和MitoSOX Red,来表征通透的猫心室肌细胞中线粒体一氧化氮合酶(mtNOS)产生NO和ROS的情况。当存在mtNOS的底物L-精氨酸时,通过暴露于不同的细胞质Ca²⁺浓度([Ca²⁺]i = 1、2和5微摩尔)刺激线粒体Ca²⁺摄取,会导致线粒体产生NO呈剂量依赖性增加。用质子载体FCCP破坏线粒体膜电位,或用Ru360阻断线粒体Ca²⁺单向转运体,以及用鱼藤酮或抗霉素A联合寡霉素阻断呼吸链,均会抑制线粒体NO的产生。在没有L-精氨酸的情况下,刺激Ca²⁺摄取期间线粒体NO的产生显著减少,但伴随着线粒体ROS产生的增加。抑制线粒体精氨酸酶以限制L-精氨酸的可用性,会导致Ca²⁺诱导的ROS产生受到50%的抑制。线粒体NO和ROS的产生均被nNOS抑制剂(4S)-N-(4-氨基-5[氨基乙基]氨基戊基)-N'-硝基胍和钙调蛋白拮抗剂W-7阻断,而eNOS抑制剂L-N⁵-(1-亚氨基乙基)鸟氨酸(L-NIO)或iNOS抑制剂N-(3-氨甲基)苄基乙脒二盐酸盐(1400W)则没有效果。超氧化物歧化酶模拟物和过氧亚硝酸盐清除剂MnTBAP消除了Ca²⁺诱导的ROS生成,并使NO产生增加了三倍,这表明在没有MnTBAP的情况下,要么超氧自由基的形成抑制了NO的产生,要么部分生成的NO迅速转化为过氧亚硝酸盐。在没有L-精氨酸的情况下,线粒体Ca²⁺摄取会诱导线粒体通透性转换孔(PTP)开放,这被PTP抑制剂环孢素A和MnTBAP阻断,并通过补充L-精氨酸而逆转。在存在mtNOS辅因子(6R)-5,6,7,8-四氢生物蝶呤(BH₄;100微摩尔)的情况下,线粒体ROS生成和PTP开放减少,而线粒体NO生成略有增加。这些数据表明,线粒体Ca²⁺摄取激活mtNOS,并导致NO介导的对线粒体PTP开放的保护作用,前提是有足够的L-精氨酸和BH₄。总之,我们的数据表明L-精氨酸和BH₄通过调节线粒体氧化应激和mtNOS对PTP开放的调节作用,对心脏保护具有重要意义。