Moens An L, Takimoto Eiki, Tocchetti Carlo G, Chakir Khalid, Bedja Djahida, Cormaci Gianfranco, Ketner Elizabeth A, Majmudar Maulik, Gabrielson Kathleen, Halushka Marc K, Mitchell James B, Biswal Shyam, Channon Keith M, Wolin Michael S, Alp Nicholas J, Paolocci Nazareno, Champion Hunter C, Kass David A
Johns Hopkins Medical Institutions, Division of Cardiology, Baltimore, MD 21205, USA.
Circulation. 2008 May 20;117(20):2626-36. doi: 10.1161/CIRCULATIONAHA.107.737031. Epub 2008 May 12.
Sustained pressure overload induces pathological cardiac hypertrophy and dysfunction. Oxidative stress linked to nitric oxide synthase (NOS) uncoupling may play an important role. We tested whether tetrahydrobiopterin (BH4) can recouple NOS and reverse preestablished advanced hypertrophy, fibrosis, and dysfunction.
C57/Bl6 mice underwent transverse aortic constriction for 4 weeks, increasing cardiac mass (190%) and diastolic dimension (144%), lowering ejection fraction (-46%), and triggering NOS uncoupling and oxidative stress. Oral BH4 was then administered for 5 more weeks of pressure overload. Without reducing loading, BH4 reversed hypertrophy and fibrosis, recoupled endothelial NOS, lowered oxidant stress, and improved chamber and myocyte function, whereas untreated hearts worsened. If BH4 was started at the onset of pressure overload, it did not suppress hypertrophy over the first week when NOS activity remained preserved even in untreated transverse aortic constriction hearts. However, BH4 stopped subsequent remodeling when NOS activity was otherwise declining. A broad antioxidant, Tempol, also reduced oxidant stress yet did not recouple NOS or reverse worsened hypertrophy/fibrosis from sustained transverse aortic constriction. Microarray analysis revealed very different gene expression profiles for both treatments. BH4 did not enhance net protein kinase G activity. Finally, transgenic mice with enhanced BH4 synthesis confined to endothelial cells were unprotected against pressure overload, indicating that exogenous BH4 targeted myocytes and fibroblasts.
NOS recoupling by exogenous BH4 ameliorates preexisting advanced cardiac hypertrophy/fibrosis and is more effective than a less targeted antioxidant approach (Tempol). These data highlight the importance of myocyte NOS uncoupling in hypertrophic heart disease and support BH4 as a potential new approach to treat this disorder.
持续的压力超负荷会诱发病理性心脏肥大和功能障碍。与一氧化氮合酶(NOS)解偶联相关的氧化应激可能起重要作用。我们测试了四氢生物蝶呤(BH4)是否能使NOS重新偶联,并逆转已预先形成的严重肥大、纤维化和功能障碍。
C57/Bl6小鼠接受主动脉缩窄手术4周,导致心脏重量增加(190%)、舒张期内径增加(144%)、射血分数降低(-46%),并引发NOS解偶联和氧化应激。然后在压力超负荷状态下再口服BH4 5周。在不减轻负荷的情况下,BH4逆转了肥大和纤维化,使内皮型NOS重新偶联,降低了氧化应激,并改善了心室和心肌细胞功能,而未治疗的心脏情况则恶化。如果在压力超负荷开始时就给予BH4,在第一周当即使未治疗的主动脉缩窄心脏中NOS活性仍保持时,它并不能抑制肥大。然而,当NOS活性否则会下降时,BH4阻止了随后的重塑。一种广泛的抗氧化剂Tempol也降低了氧化应激,但未使NOS重新偶联,也未逆转由持续主动脉缩窄导致的恶化的肥大/纤维化。微阵列分析显示两种治疗的基因表达谱非常不同。BH4并未增强蛋白激酶G的净活性。最后,BH4合成仅限于内皮细胞的转基因小鼠对压力超负荷无保护作用,表明外源性BH4作用于心肌细胞和成纤维细胞。
外源性BH4使NOS重新偶联可改善已存在的严重心脏肥大/纤维化,且比针对性较差的抗氧化剂方法(Tempol)更有效。这些数据突出了心肌细胞NOS解偶联在肥厚性心脏病中的重要性,并支持BH4作为治疗这种疾病的一种潜在新方法。