Suppr超能文献

四氢生物蝶呤逆转压力超负荷所致的心肌肥厚和纤维化:重新偶联一氧化氮合酶作为一种治疗策略的疗效

Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy.

作者信息

Moens An L, Takimoto Eiki, Tocchetti Carlo G, Chakir Khalid, Bedja Djahida, Cormaci Gianfranco, Ketner Elizabeth A, Majmudar Maulik, Gabrielson Kathleen, Halushka Marc K, Mitchell James B, Biswal Shyam, Channon Keith M, Wolin Michael S, Alp Nicholas J, Paolocci Nazareno, Champion Hunter C, Kass David A

机构信息

Johns Hopkins Medical Institutions, Division of Cardiology, Baltimore, MD 21205, USA.

出版信息

Circulation. 2008 May 20;117(20):2626-36. doi: 10.1161/CIRCULATIONAHA.107.737031. Epub 2008 May 12.

Abstract

BACKGROUND

Sustained pressure overload induces pathological cardiac hypertrophy and dysfunction. Oxidative stress linked to nitric oxide synthase (NOS) uncoupling may play an important role. We tested whether tetrahydrobiopterin (BH4) can recouple NOS and reverse preestablished advanced hypertrophy, fibrosis, and dysfunction.

METHODS AND RESULTS

C57/Bl6 mice underwent transverse aortic constriction for 4 weeks, increasing cardiac mass (190%) and diastolic dimension (144%), lowering ejection fraction (-46%), and triggering NOS uncoupling and oxidative stress. Oral BH4 was then administered for 5 more weeks of pressure overload. Without reducing loading, BH4 reversed hypertrophy and fibrosis, recoupled endothelial NOS, lowered oxidant stress, and improved chamber and myocyte function, whereas untreated hearts worsened. If BH4 was started at the onset of pressure overload, it did not suppress hypertrophy over the first week when NOS activity remained preserved even in untreated transverse aortic constriction hearts. However, BH4 stopped subsequent remodeling when NOS activity was otherwise declining. A broad antioxidant, Tempol, also reduced oxidant stress yet did not recouple NOS or reverse worsened hypertrophy/fibrosis from sustained transverse aortic constriction. Microarray analysis revealed very different gene expression profiles for both treatments. BH4 did not enhance net protein kinase G activity. Finally, transgenic mice with enhanced BH4 synthesis confined to endothelial cells were unprotected against pressure overload, indicating that exogenous BH4 targeted myocytes and fibroblasts.

CONCLUSIONS

NOS recoupling by exogenous BH4 ameliorates preexisting advanced cardiac hypertrophy/fibrosis and is more effective than a less targeted antioxidant approach (Tempol). These data highlight the importance of myocyte NOS uncoupling in hypertrophic heart disease and support BH4 as a potential new approach to treat this disorder.

摘要

背景

持续的压力超负荷会诱发病理性心脏肥大和功能障碍。与一氧化氮合酶(NOS)解偶联相关的氧化应激可能起重要作用。我们测试了四氢生物蝶呤(BH4)是否能使NOS重新偶联,并逆转已预先形成的严重肥大、纤维化和功能障碍。

方法与结果

C57/Bl6小鼠接受主动脉缩窄手术4周,导致心脏重量增加(190%)、舒张期内径增加(144%)、射血分数降低(-46%),并引发NOS解偶联和氧化应激。然后在压力超负荷状态下再口服BH4 5周。在不减轻负荷的情况下,BH4逆转了肥大和纤维化,使内皮型NOS重新偶联,降低了氧化应激,并改善了心室和心肌细胞功能,而未治疗的心脏情况则恶化。如果在压力超负荷开始时就给予BH4,在第一周当即使未治疗的主动脉缩窄心脏中NOS活性仍保持时,它并不能抑制肥大。然而,当NOS活性否则会下降时,BH4阻止了随后的重塑。一种广泛的抗氧化剂Tempol也降低了氧化应激,但未使NOS重新偶联,也未逆转由持续主动脉缩窄导致的恶化的肥大/纤维化。微阵列分析显示两种治疗的基因表达谱非常不同。BH4并未增强蛋白激酶G的净活性。最后,BH4合成仅限于内皮细胞的转基因小鼠对压力超负荷无保护作用,表明外源性BH4作用于心肌细胞和成纤维细胞。

结论

外源性BH4使NOS重新偶联可改善已存在的严重心脏肥大/纤维化,且比针对性较差的抗氧化剂方法(Tempol)更有效。这些数据突出了心肌细胞NOS解偶联在肥厚性心脏病中的重要性,并支持BH4作为治疗这种疾病的一种潜在新方法。

相似文献

3
Bi-modal dose-dependent cardiac response to tetrahydrobiopterin in pressure-overload induced hypertrophy and heart failure.
J Mol Cell Cardiol. 2011 Oct;51(4):564-9. doi: 10.1016/j.yjmcc.2011.05.017. Epub 2011 May 30.
4
Adverse ventricular remodeling and exacerbated NOS uncoupling from pressure-overload in mice lacking the beta3-adrenoreceptor.
J Mol Cell Cardiol. 2009 Nov;47(5):576-85. doi: 10.1016/j.yjmcc.2009.06.005. Epub 2009 Sep 18.
5
Endothelial cell-specific roles for tetrahydrobiopterin in myocardial function, cardiac hypertrophy, and response to myocardial ischemia-reperfusion injury.
Am J Physiol Heart Circ Physiol. 2023 Apr 1;324(4):H430-H442. doi: 10.1152/ajpheart.00562.2022. Epub 2023 Feb 3.
8
Decreased cardiac mitochondrial tetrahydrobiopterin in a rat model of pressure overload.
Int J Mol Med. 2013 Mar;31(3):589-96. doi: 10.3892/ijmm.2013.1236. Epub 2013 Jan 10.
9
BH4 Increases nNOS Activity and Preserves Left Ventricular Function in Diabetes.
Circ Res. 2021 Mar 5;128(5):585-601. doi: 10.1161/CIRCRESAHA.120.316656. Epub 2021 Jan 26.
10
Recoupling the cardiac nitric oxide synthases: tetrahydrobiopterin synthesis and recycling.
Curr Heart Fail Rep. 2012 Sep;9(3):200-10. doi: 10.1007/s11897-012-0097-5.

引用本文的文献

1
Promotion of nitric oxide production: mechanisms, strategies, and possibilities.
Front Physiol. 2025 Jan 23;16:1545044. doi: 10.3389/fphys.2025.1545044. eCollection 2025.
2
KDM3A knockdown regulates COMP, LOX, COL8A1 and ACOT1 genes in myocardial fibrosis.
Bioinformation. 2024 Apr 30;20(4):305-313. doi: 10.6026/973206300200305. eCollection 2024.
4
NADPH Oxidases and Oxidative Stress in the Pathogenesis of Atrial Fibrillation.
Antioxidants (Basel). 2023 Oct 6;12(10):1833. doi: 10.3390/antiox12101833.
6
Endothelial cell-specific roles for tetrahydrobiopterin in myocardial function, cardiac hypertrophy, and response to myocardial ischemia-reperfusion injury.
Am J Physiol Heart Circ Physiol. 2023 Apr 1;324(4):H430-H442. doi: 10.1152/ajpheart.00562.2022. Epub 2023 Feb 3.
7
The intervention effect of oil on the metabolomics and intestinal flora in pulmonary fibrosis.
Front Pharmacol. 2022 Nov 1;13:1037563. doi: 10.3389/fphar.2022.1037563. eCollection 2022.
8
The Critical Role of Tetrahydrobiopterin (BH4) Metabolism in Modulating Radiosensitivity: BH4/NOS Axis as an Angel or a Devil.
Front Oncol. 2021 Aug 27;11:720632. doi: 10.3389/fonc.2021.720632. eCollection 2021.
9
Novel Role of GPR35 (G-Protein-Coupled Receptor 35) in the Regulation of Endothelial Cell Function and Blood Pressure.
Hypertension. 2021 Sep;78(3):816-830. doi: 10.1161/HYPERTENSIONAHA.120.15423. Epub 2021 Jul 19.
10
Novel PGC-1/ATF5 Axis Partly Activates UPR and Mediates Cardioprotective Role of Tetrahydrocurcumin in Pathological Cardiac Hypertrophy.
Oxid Med Cell Longev. 2020 Dec 26;2020:9187065. doi: 10.1155/2020/9187065. eCollection 2020.

本文引用的文献

1
Cysteine redox sensor in PKGIa enables oxidant-induced activation.
Science. 2007 Sep 7;317(5843):1393-7. doi: 10.1126/science.1144318. Epub 2007 Aug 23.
3
Small-molecule therapies for cardiac hypertrophy: moving beneath the cell surface.
Nat Rev Drug Discov. 2007 Aug;6(8):617-35. doi: 10.1038/nrd2193.
4
The chemistry and biology of nitroxide compounds.
Free Radic Biol Med. 2007 Jun 1;42(11):1632-50. doi: 10.1016/j.freeradbiomed.2007.02.030. Epub 2007 Mar 12.
5
Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5.
Circulation. 2007 Apr 24;115(16):2159-67. doi: 10.1161/CIRCULATIONAHA.106.643536. Epub 2007 Apr 9.
6
Nitric oxide and peroxynitrite in health and disease.
Physiol Rev. 2007 Jan;87(1):315-424. doi: 10.1152/physrev.00029.2006.
8
Role of oxidative stress in cardiac hypertrophy and remodeling.
Hypertension. 2007 Feb;49(2):241-8. doi: 10.1161/01.HYP.0000254415.31362.a7. Epub 2006 Dec 26.
9
Clinical trials update from the Heart Failure Society of America meeting: FIX-CHF-4, selective cardiac myosin activator and OPT-CHF.
Eur J Heart Fail. 2006 Nov;8(7):764-6. doi: 10.1016/j.ejheart.2006.10.001. Epub 2006 Oct 16.
10
Nitroso-redox interactions in the cardiovascular system.
Circulation. 2006 Oct 3;114(14):1531-44. doi: 10.1161/CIRCULATIONAHA.105.605519.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验