Suppr超能文献

Distinction between NAD- and NADH-binding forms of mitochondrial malate dehydrogenase as shown by inhibition with thenoyltrifuoroacetone.

作者信息

Gutman M, Hartstein E

出版信息

Biochim Biophys Acta. 1977 Mar 15;481(1):33-41. doi: 10.1016/0005-2744(77)90134-6.

Abstract

The inhibition of mitochondrial malate dehydrogenase (L-malate : NADH oxidoreductase, EC 1.1.1.37) by 2-thenoyltrifluoroacetone (TTFA) was investigated at pH 8.0 where both forward and backward reactions can be measured. The inhibition with respect to malate is non-competitive at finite NAD concentrations. Increasing the NAD concentrations lowers the slope of the double reciprocal plot so that at infinite NAD the inhibition is uncompetitive. The inhibition with respect to oxaloacetate is non-competitive. Increasing the NADH concentration lowers the slope and intercept of the double reciprocal plot so that at infinite NADH the inhibition is nil. The inhibition with respect to NADH is competitive, whatever the oxaloacetate concentrations are. The inhibition with respect to NAD, at all malate concentrations, is non-competitive. This pattern of inhibition is incompatible with any model assuming that NAD and NADH reacts with identical forms of the enzyme. On the other hand the reciprocating compulsory ordered mechanism, where the two subunits of the dimeric enzyme are working in concert, can account for all the experimental results. It is concluded that NAD and NADH bind to different forms of the enzyme separated by reversible steps. Only one form (see text), the one which binds NADH, can react to form the dead end complex (see text). The similarity between mechanism of inhibition by thenoyltrifluoroacetone and other hydrophobic inhibitors of malate dehydrogenase is discussed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验