Suppr超能文献

细菌发酵产物丁酸通过活性氧介导的cullin-1类泛素化修饰变化影响上皮信号传导。

The bacterial fermentation product butyrate influences epithelial signaling via reactive oxygen species-mediated changes in cullin-1 neddylation.

作者信息

Kumar Amrita, Wu Huixia, Collier-Hyams Lauren S, Kwon Young-Man, Hanson Jason M, Neish Andrew S

机构信息

Department of Pathology and Laboratory Medicine, Epithelial Pathobiology Unit, Emory University School of Medicine, Atlanta, GA 30322, USA.

出版信息

J Immunol. 2009 Jan 1;182(1):538-46. doi: 10.4049/jimmunol.182.1.538.

Abstract

The human enteric flora plays a significant role in intestinal health and disease. Populations of enteric bacteria can inhibit the NF-kappaB pathway by blockade of IkappaB-alpha ubiquitination, a process catalyzed by the E3-SCF(beta-TrCP) ubiquitin ligase. The activity of this ubiquitin ligase is regulated via covalent modification of the Cullin-1 subunit by the ubiquitin-like protein NEDD8. We previously reported that interaction of viable commensal bacteria with mammalian intestinal epithelial cells resulted in a rapid and reversible generation of reactive oxygen species (ROS) that modulated neddylation of Cullin-1 and resulted in suppressive effects on the NF-kappaB pathway. Herein, we demonstrate that butyrate and other short chain fatty acids supplemented to model human intestinal epithelia in vitro and human tissue ex vivo results in loss of neddylated Cul-1 and show that physiological concentrations of butyrate modulate the ubiquitination and degradation of a target of the E3- SCF(beta-TrCP) ubiquitin ligase, the NF-kappaB inhibitor IkappaB-alpha. Mechanistically, we show that physiological concentrations of butyrate induces reactive oxygen species that transiently alters the intracellular redox balance and results in inactivation of the NEDD8-conjugating enzyme Ubc12 in a manner similar to effects mediated by viable bacteria. Because the normal flora produces significant amounts of butyrate and other short chain fatty acids, these data provide a functional link between a natural product of the intestinal normal flora and important epithelial inflammatory and proliferative signaling pathways.

摘要

人类肠道菌群在肠道健康与疾病中发挥着重要作用。肠道细菌群体可通过阻断IκB-α泛素化来抑制核因子κB(NF-κB)信号通路,IκB-α泛素化是由E3-SCF(β-TrCP)泛素连接酶催化的过程。该泛素连接酶的活性通过泛素样蛋白NEDD8对Cullin-1亚基的共价修饰来调节。我们之前报道过,活的共生细菌与哺乳动物肠道上皮细胞相互作用会导致活性氧(ROS)快速且可逆地产生,ROS可调节Cullin-1的NEDD化,并对NF-κB信号通路产生抑制作用。在此,我们证明,在体外对模拟人类肠道上皮细胞以及离体的人体组织补充丁酸盐和其他短链脂肪酸会导致Cul-1的NEDD化缺失,并表明生理浓度的丁酸盐可调节E3-SCF(β-TrCP)泛素连接酶的一个靶点——NF-κB抑制剂IκB-α的泛素化和降解。从机制上来说,我们发现生理浓度的丁酸盐会诱导活性氧的产生,活性氧会短暂改变细胞内的氧化还原平衡,并导致NEDD8缀合酶Ubc12失活,其作用方式类似于活细菌介导的效应。由于正常菌群会产生大量丁酸盐和其他短链脂肪酸,这些数据为肠道正常菌群的一种天然产物与重要的上皮炎症和增殖信号通路之间提供了功能联系。

相似文献

2
Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species.
EMBO J. 2007 Oct 31;26(21):4457-66. doi: 10.1038/sj.emboj.7601867. Epub 2007 Oct 4.
3
Cutting edge: bacterial modulation of epithelial signaling via changes in neddylation of cullin-1.
J Immunol. 2005 Oct 1;175(7):4194-8. doi: 10.4049/jimmunol.175.7.4194.
5
Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha.
Mol Cell Biol. 2000 Apr;20(7):2326-33. doi: 10.1128/MCB.20.7.2326-2333.2000.
8
The NEDD8 pathway is essential for SCF(beta -TrCP)-mediated ubiquitination and processing of the NF-kappa B precursor p105.
J Biol Chem. 2002 Jun 28;277(26):23253-9. doi: 10.1074/jbc.M200967200. Epub 2002 Apr 12.

引用本文的文献

1
Redox-driven regulation of UCHL3/Yuh1 influences mitochondrial health via the NEDD8/Rub1 pathway.
Redox Biol. 2025 Jun;83:103655. doi: 10.1016/j.redox.2025.103655. Epub 2025 May 7.
2
Impact of gut microbiota on colorectal anastomotic healing (Review).
Mol Clin Oncol. 2025 Apr 14;22(6):52. doi: 10.3892/mco.2025.2847. eCollection 2025 Jun.
3
Clinical Picture, Diagnosis, Management of NEC, and Effects of Probiotics on its Prevention: A Narrative Review.
Curr Pediatr Rev. 2025;21(2):104-110. doi: 10.2174/0115733963317134240801113609.
4
New insights into the pathogenesis of necrotizing enterocolitis and the dawn of potential therapeutics.
Semin Pediatr Surg. 2023 Jun;32(3):151309. doi: 10.1016/j.sempedsurg.2023.151309. Epub 2023 Jun 1.
5
Novel Insight into the Effect of Probiotics in the Regulation of the Most Important Pathways Involved in the Pathogenesis of Type 2 Diabetes Mellitus.
Probiotics Antimicrob Proteins. 2024 Jun;16(3):829-844. doi: 10.1007/s12602-023-10056-8. Epub 2023 May 10.
6
Advances in the potential roles of Cullin-RING ligases in regulating autoimmune diseases.
Front Immunol. 2023 Mar 17;14:1125224. doi: 10.3389/fimmu.2023.1125224. eCollection 2023.
7
Interaction between Butyrate and Tumor Necrosis Factor α in Primary Rat Colonocytes.
Biomolecules. 2023 Jan 30;13(2):258. doi: 10.3390/biom13020258.
8
Fatty acids produced by the gut microbiota dampen host inflammatory responses by modulating intestinal SUMOylation.
Gut Microbes. 2022 Jan-Dec;14(1):2108280. doi: 10.1080/19490976.2022.2108280.
10
Probiotics in Intestinal Mucosal Healing: A New Therapy or an Old Friend?
Pharmaceuticals (Basel). 2021 Nov 19;14(11):1181. doi: 10.3390/ph14111181.

本文引用的文献

1
Review article: the role of butyrate on colonic function.
Aliment Pharmacol Ther. 2008 Jan 15;27(2):104-19. doi: 10.1111/j.1365-2036.2007.03562.x. Epub 2007 Oct 25.
2
Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species.
EMBO J. 2007 Oct 31;26(21):4457-66. doi: 10.1038/sj.emboj.7601867. Epub 2007 Oct 4.
3
Butyrate regulates the expression of pathogen-triggered IL-8 in intestinal epithelia.
Pediatr Res. 2007 Nov;62(5):542-6. doi: 10.1203/PDR.0b013e318155a422.
4
Interactions and competition within the microbial community of the human colon: links between diet and health.
Environ Microbiol. 2007 May;9(5):1101-11. doi: 10.1111/j.1462-2920.2007.01281.x.
5
Hydrogen peroxide sensing and signaling.
Mol Cell. 2007 Apr 13;26(1):1-14. doi: 10.1016/j.molcel.2007.03.016.
6
Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation.
J Clin Invest. 2007 Mar;117(3):703-11. doi: 10.1172/JCI30049. Epub 2007 Feb 22.
8
Specificity in reactive oxidant signaling: think globally, act locally.
J Cell Biol. 2006 Aug 28;174(5):615-23. doi: 10.1083/jcb.200605036. Epub 2006 Aug 21.
9
Toxic and metabolic effect of sodium butyrate on SAS tongue cancer cells: role of cell cycle deregulation and redox changes.
Toxicology. 2006 Jun 15;223(3):235-47. doi: 10.1016/j.tox.2006.04.033. Epub 2006 Apr 27.
10
Colonic health: fermentation and short chain fatty acids.
J Clin Gastroenterol. 2006 Mar;40(3):235-43. doi: 10.1097/00004836-200603000-00015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验