Suppr超能文献

赤铁矿表面上硒(IV)与硅酸之间的竞争。

Competition between selenium (IV) and silicic acid on the hematite surface.

作者信息

Jordan Norbert, Marmier Nicolas, Lomenech Claire, Giffaut Eric, Ehrhardt Jean-Jacques

机构信息

Université de Nice-Sophia-Antipolis, Laboratoire de Radiochimie, Sciences Analytiques et Environnement, 28 Avenue Valrose, 06108 Nice Cedex 2, France.

出版信息

Chemosphere. 2009 Mar;75(1):129-34. doi: 10.1016/j.chemosphere.2008.11.018. Epub 2008 Dec 24.

Abstract

Competition between selenium (IV) and silicic acid for the hematite (alpha-Fe(2)O(3)) surface has been studied during this work. Single batch experiments have been performed to study separately the sorption of selenium (IV) and silicic acid as a function of the pH. With the help of the 2-pK surface complexation model, experimental data have been fitted using the FITEQL 4.0 program. Two monodentate inner-sphere surface complexes have been used to fit selenite ions retention, triple bond FeSeO(3)(-) and triple bond FeHSeO(3). In order to fit sorption of silicic acid, the two following surface complexes, namely triple bond FeH(3)SiO(4), and triple bond FeH(2)SiO(4)(-), have been used. Using the surface complexation constants coming from these two binary systems, prediction curves of the effect of silicic acid on the retention of selenium (IV) onto hematite have been obtained. Finally, performed experiments showed a competition between selenium (IV) and silicic acid for the surface sites of hematite. Experimental data matched DDLM predictions, confirming the ability of the surface complexation model to predict quantitatively and qualitatively the ternary system selenium (IV)/H(4)SiO(4)/hematite.

摘要

在本研究中,对硒(IV)和硅酸在赤铁矿(α-Fe₂O₃)表面的竞争吸附进行了研究。开展了单批次实验,分别研究了硒(IV)和硅酸的吸附与pH值的关系。借助二质子表面络合模型,使用FITEQL 4.0程序对实验数据进行了拟合。使用两种单齿内球表面络合物来拟合亚硒酸根离子的保留情况,即三键FeSeO₃⁻和三键FeHSeO₃。为了拟合硅酸的吸附情况,使用了以下两种表面络合物,即三键FeH₃SiO₄和三键FeH₂SiO₄⁻。利用来自这两个二元体系的表面络合常数,得到了硅酸对硒(IV)在赤铁矿上保留效果的预测曲线。最后,实验表明硒(IV)和硅酸在赤铁矿表面位点存在竞争。实验数据与双电层模型(DDLM)预测结果相符,证实了表面络合模型在定量和定性预测三元体系硒(IV)/H₄SiO₄/赤铁矿方面的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验