Suppr超能文献

Construction of a functional lactose permease devoid of cysteine residues.

作者信息

van Iwaarden P R, Pastore J C, Konings W N, Kaback H R

机构信息

Howard Hughes Medical Institute, Department of Physiology, Los Angeles, California 90024-1570.

出版信息

Biochemistry. 1991 Oct 8;30(40):9595-600. doi: 10.1021/bi00104a005.

Abstract

By use of oligonucleotide-directed, site-specific mutagenesis, a lactose (lac) permease molecule was constructed in which all eight cysteinyl residues were simultaneously mutagenized (C-less permease). Cys154 was replaced with valine, and Cys117, -148, -176, -234, -333, -353, and -355 were replaced with serine. Remarkably, C-less permease catalyzes lactose accumulation in the presence of a transmembrane proton electrochemical gradient (interior negative and alkaline). Thus, in intact cells and right-side-out membrane vesicles containing comparable amounts of wild-type and Cys-less permease, the mutant protein catalyzes lactose transport at a maximum velocity and to a steady-state level of accumulation of about 35% and 55%, respectively, of wild-type with a similar apparent Km (ca. 0.3 mM). As anticipated, moreover, active lactose transport via C-less permease is completely resistant to inactivation by N-ethylmaleimide. Finally, C-less permease also catalyzes efflux and equilibrium exchange at about 35% of wild-type activity. The results provide definitive evidence that sulfhydryl groups do not play an essential role in the mechanism of lactose/H+ symport. Potential applications of the C-less mutant to studies of static and dynamic aspects of permease structure/function are discussed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验