Frillingos S, Sun J, Gonzalez A, Kaback H R
Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90024-1570, USA.
Biochemistry. 1997 Jan 7;36(1):269-73. doi: 10.1021/bi9618629.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in putative transmembrane helix II and flanking hydrophilic loops (from Leu34 to Lys74) was replaced individually with Cys. Of the 41 single-Cys mutants, 28 accumulate lactose to > 70% of the steady state observed with C-less permease, and an additional 10 mutants exhibit lower but significant levels of accumulation (25-60% of C-less). His35-->Cys permease exhibits very low activity (ca. 20% of C-less), while Gly64-->Cys or Asp68-->Cys permease is unable to accumulate lactose. However, His35 can be replaced with Arg without effect on transport activity [Padan, E., Sarkar, H.K., et al. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 6765-6768]. In addition, even though mutant Gly64-->Cys or Glu68-->Cys is inactive both in the C-less background and in the wild-type, neither Gly64 [Jung, K., Jung, H., et al. (1995) Biochemistry 34, 1030-1039] nor Glu68 [Jessen-Marshall, A.E., & Brooker, R.J. (1996) J. Biol. Chem. 271, 1400-1404] is essential for active lactose transport. Immunoloblot analysis reveals that all of the mutants except His35-->Cys permease are inserted into the membrane at concentrations comparable to that of C-less permease. The transport activity of the single-Cys mutants is altered by N-ethylmaleimide (NEM) treatment in a highly specific manner. Most of the mutants are insensitive, but Cys replacements render the permease sensitive to NEM inactivation at positions that cluster in a manner indicating that they are on one face of an alpha-helix (Thr45-->Cys, Gly46-->Cys, Phe49-->Cys, Ser53-->Cys, Ser56-->Cys, Gln60-->Cys, and Ser67-->Cys). Interestingly, the same face contains positions where Cys substitution itself leads to low transport activity (Ile52-->Cys, Leu57-->Cys, Gln60-->Cys, and Gly64-->Cys). The results demonstrate that although no residue per se in this region of the permease is irreplaceable, the surface of one face of helix II is important for active lactose transport.
利用一个不含半胱氨酸残基的功能性乳糖通透酶突变体(无半胱氨酸通透酶),将假定的跨膜螺旋II及其侧翼亲水环(从Leu34到Lys74)中的每个氨基酸残基逐个替换为半胱氨酸。在41个单半胱氨酸突变体中,28个积累的乳糖达到无半胱氨酸通透酶所观察到的稳态的70%以上,另外10个突变体表现出较低但显著的积累水平(无半胱氨酸通透酶的25 - 60%)。His35→Cys通透酶表现出非常低的活性(约为无半胱氨酸通透酶的20%),而Gly64→Cys或Asp68→Cys通透酶无法积累乳糖。然而,His35可以被Arg取代而不影响转运活性[帕丹,E.,萨卡尔,H.K.等人(1985年)《美国国家科学院院刊》82,6765 - 6768]。此外,尽管突变体Gly64→Cys或Glu68→Cys在无半胱氨酸背景和野生型中均无活性,但Gly64[荣格,K.,荣格,H.等人(1995年)《生物化学》34,1030 - 1039]和Glu68[杰森 - 马歇尔,A.E.,&布鲁克,R.J.(1996年)《生物化学杂志》271,1400 - 1404]对于乳糖的主动转运并非必不可少。免疫印迹分析表明,除了His35→Cys通透酶外,所有突变体均以与无半胱氨酸通透酶相当的浓度插入膜中。单半胱氨酸突变体的转运活性通过N - 乙基马来酰亚胺(NEM)处理以高度特异性的方式发生改变。大多数突变体不敏感,但半胱氨酸的替换使通透酶在聚集在一起的位置对NEM失活敏感,这表明它们位于α - 螺旋的一个面上(Thr45→Cys、Gly46→Cys、Phe49→Cys、Ser53→Cys、Ser56→Cys、Gln60→Cys和Ser67→Cys)。有趣的是,同一面上包含半胱氨酸取代本身导致低转运活性的位置(Ile52→Cys、Leu57→Cys、Gln60→Cys和Gly64→Cys)。结果表明,尽管通透酶该区域本身没有一个残基是不可替代的,但螺旋II一个面的表面对于乳糖的主动转运很重要。