Suppr超能文献

利用纳米抗体确定创伤弧菌EpsI:EpsJ假菌毛异二聚体的结构

Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus.

作者信息

Lam Anita Y, Pardon Els, Korotkov Konstantin V, Hol Wim G J, Steyaert Jan

机构信息

Department of Biochemistry, Biomolecular Structure Center, University of Washington, 1959 Pacific Ave. NE, HSC K-428, Seattle, WA 98195, USA.

Biomolecular Structure & Design Program, Biomolecular Structure Center, University of Washington, Seattle, WA 98195, USA.

出版信息

J Struct Biol. 2009 Apr;166(1):8-15. doi: 10.1016/j.jsb.2008.11.008. Epub 2008 Dec 10.

Abstract

Pseudopilins form the central pseudopilus of the sophisticated bacterial type 2 secretion systems. The crystallization of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus was greatly accelerated by the use of nanobodies, which are the smallest antigen-binding fragments derived from heavy-chain only camelid antibodies. Seven anti-EpsI:EpsJ nanobodies were generated and co-crystallization of EpsI:EpsJ nanobody complexes yielded several crystal forms very rapidly. In the structure solved, the nanobodies are arranged in planes throughout the crystal lattice, linking layers of EpsI:EpsJ heterodimers. The EpsI:EpsJ dimer observed confirms a right-handed architecture of the pseudopilus, but, compared to a previous structure of the EpsI:EpsJ heterodimer, EpsI differs 6 degrees in orientation with respect to EpsJ; one loop of EpsJ is shifted by approximately 5A due to interactions with the nanobody; and a second loop of EpsJ underwent a major change of 17A without contacts with the nanobody. Clearly, nanobodies accelerate dramatically the crystallization of recalcitrant protein complexes and can reveal conformational flexibility not observed before.

摘要

假菌毛蛋白构成了复杂的细菌2型分泌系统的中心假菌毛。创伤弧菌的EpsI:EpsJ假菌毛蛋白异二聚体的结晶通过使用纳米抗体得以大大加速,纳米抗体是仅来源于骆驼科动物重链抗体的最小抗原结合片段。产生了7种抗EpsI:EpsJ纳米抗体,EpsI:EpsJ纳米抗体复合物的共结晶非常迅速地产生了几种晶体形式。在解析出的结构中,纳米抗体在整个晶格中排列成平面,连接着EpsI:EpsJ异二聚体层。观察到的EpsI:EpsJ二聚体证实了假菌毛的右手结构,但是,与EpsI:EpsJ异二聚体的先前结构相比,EpsI相对于EpsJ在方向上相差6度;由于与纳米抗体的相互作用,EpsJ的一个环移位了约5埃;并且EpsJ的第二个环在未与纳米抗体接触的情况下发生了17埃的重大变化。显然,纳米抗体极大地加速了难结晶蛋白质复合物的结晶,并且可以揭示以前未观察到的构象灵活性。

相似文献

1
Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus.
J Struct Biol. 2009 Apr;166(1):8-15. doi: 10.1016/j.jsb.2008.11.008. Epub 2008 Dec 10.
2
The crystal structure of a binary complex of two pseudopilins: EpsI and EpsJ from the type 2 secretion system of Vibrio vulnificus.
J Mol Biol. 2008 Jan 11;375(2):471-86. doi: 10.1016/j.jmb.2007.10.035. Epub 2007 Oct 22.
3
The 1.59Å resolution structure of the minor pseudopilin EpsH of Vibrio cholerae reveals a long flexible loop.
Biochim Biophys Acta. 2014 Feb;1844(2):406-15. doi: 10.1016/j.bbapap.2013.11.013. Epub 2013 Dec 4.
5
Structural Basis of Epitope Recognition by Heavy-Chain Camelid Antibodies.
J Mol Biol. 2018 Oct 19;430(21):4369-4386. doi: 10.1016/j.jmb.2018.09.002. Epub 2018 Sep 8.
7
Single domain antibodies: promising experimental and therapeutic tools in infection and immunity.
Med Microbiol Immunol. 2009 Aug;198(3):157-74. doi: 10.1007/s00430-009-0116-7. Epub 2009 Jun 16.
8
Molecular mimicry of human tumor antigen by heavy chain CDR3 sequence of the anti-idiotypic antibody.
J Biochem. 2000 Sep;128(3):345-7. doi: 10.1093/oxfordjournals.jbchem.a022759.
9
Introduction to heavy chain antibodies and derived Nanobodies.
Methods Mol Biol. 2012;911:15-26. doi: 10.1007/978-1-61779-968-6_2.
10
Lateral recognition of a dye hapten by a llama VHH domain.
J Mol Biol. 2001 Aug 3;311(1):123-9. doi: 10.1006/jmbi.2001.4856.

引用本文的文献

1
Nanobodies in the fight against infectious diseases: repurposing nature's tiny weapons.
World J Microbiol Biotechnol. 2024 May 21;40(7):209. doi: 10.1007/s11274-024-03990-4.
2
Development and characterization of a novel nanobody with SRMV neutralizing activity.
Microb Cell Fact. 2024 Feb 10;23(1):45. doi: 10.1186/s12934-024-02311-6.
3
Integrative proteomics identifies thousands of distinct, multi-epitope, and high-affinity nanobodies.
Cell Syst. 2021 Mar 17;12(3):220-234.e9. doi: 10.1016/j.cels.2021.01.003. Epub 2021 Feb 15.
6
Nanobodies: Chemical Functionalization Strategies and Intracellular Applications.
Angew Chem Int Ed Engl. 2018 Feb 23;57(9):2314-2333. doi: 10.1002/anie.201708459. Epub 2018 Jan 26.
7
Nanobodies As Tools to Understand, Diagnose, and Treat African Trypanosomiasis.
Front Immunol. 2017 Jun 30;8:724. doi: 10.3389/fimmu.2017.00724. eCollection 2017.
8
Exploiting Nanobodies in the Detection and Quantification of Human Growth Hormone Phage-Sandwich Enzyme-Linked Immunosorbent Assay.
Front Endocrinol (Lausanne). 2017 May 30;8:115. doi: 10.3389/fendo.2017.00115. eCollection 2017.
9
10
Applying bimolecular fluorescence complementation to screen and purify aquaporin protein:protein complexes.
Protein Sci. 2016 Dec;25(12):2196-2208. doi: 10.1002/pro.3046. Epub 2016 Sep 26.

本文引用的文献

1
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
3
Structure of the GspK-GspI-GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system.
Nat Struct Mol Biol. 2008 May;15(5):462-8. doi: 10.1038/nsmb.1426. Epub 2008 Apr 27.
4
Type IV pili: paradoxes in form and function.
Curr Opin Struct Biol. 2008 Apr;18(2):267-77. doi: 10.1016/j.sbi.2007.12.009. Epub 2008 Feb 4.
5
Structure of the minor pseudopilin EpsH from the Type 2 secretion system of Vibrio cholerae.
J Mol Biol. 2008 Mar 14;377(1):91-103. doi: 10.1016/j.jmb.2007.08.041. Epub 2007 Aug 23.
6
The crystal structure of a binary complex of two pseudopilins: EpsI and EpsJ from the type 2 secretion system of Vibrio vulnificus.
J Mol Biol. 2008 Jan 11;375(2):471-86. doi: 10.1016/j.jmb.2007.10.035. Epub 2007 Oct 22.
8
DARPins: a true alternative to antibodies.
Curr Opin Drug Discov Devel. 2007 Mar;10(2):153-9.
10
Ablynx makes nanobodies from llama bodies.
Chem Biol. 2006 Dec;13(12):1243-4. doi: 10.1016/j.chembiol.2006.12.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验