Lam Anita Y, Pardon Els, Korotkov Konstantin V, Hol Wim G J, Steyaert Jan
Department of Biochemistry, Biomolecular Structure Center, University of Washington, 1959 Pacific Ave. NE, HSC K-428, Seattle, WA 98195, USA.
Biomolecular Structure & Design Program, Biomolecular Structure Center, University of Washington, Seattle, WA 98195, USA.
J Struct Biol. 2009 Apr;166(1):8-15. doi: 10.1016/j.jsb.2008.11.008. Epub 2008 Dec 10.
Pseudopilins form the central pseudopilus of the sophisticated bacterial type 2 secretion systems. The crystallization of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus was greatly accelerated by the use of nanobodies, which are the smallest antigen-binding fragments derived from heavy-chain only camelid antibodies. Seven anti-EpsI:EpsJ nanobodies were generated and co-crystallization of EpsI:EpsJ nanobody complexes yielded several crystal forms very rapidly. In the structure solved, the nanobodies are arranged in planes throughout the crystal lattice, linking layers of EpsI:EpsJ heterodimers. The EpsI:EpsJ dimer observed confirms a right-handed architecture of the pseudopilus, but, compared to a previous structure of the EpsI:EpsJ heterodimer, EpsI differs 6 degrees in orientation with respect to EpsJ; one loop of EpsJ is shifted by approximately 5A due to interactions with the nanobody; and a second loop of EpsJ underwent a major change of 17A without contacts with the nanobody. Clearly, nanobodies accelerate dramatically the crystallization of recalcitrant protein complexes and can reveal conformational flexibility not observed before.
假菌毛蛋白构成了复杂的细菌2型分泌系统的中心假菌毛。创伤弧菌的EpsI:EpsJ假菌毛蛋白异二聚体的结晶通过使用纳米抗体得以大大加速,纳米抗体是仅来源于骆驼科动物重链抗体的最小抗原结合片段。产生了7种抗EpsI:EpsJ纳米抗体,EpsI:EpsJ纳米抗体复合物的共结晶非常迅速地产生了几种晶体形式。在解析出的结构中,纳米抗体在整个晶格中排列成平面,连接着EpsI:EpsJ异二聚体层。观察到的EpsI:EpsJ二聚体证实了假菌毛的右手结构,但是,与EpsI:EpsJ异二聚体的先前结构相比,EpsI相对于EpsJ在方向上相差6度;由于与纳米抗体的相互作用,EpsJ的一个环移位了约5埃;并且EpsJ的第二个环在未与纳米抗体接触的情况下发生了17埃的重大变化。显然,纳米抗体极大地加速了难结晶蛋白质复合物的结晶,并且可以揭示以前未观察到的构象灵活性。