Tosner Zdenek, Vosegaard Thomas, Kehlet Cindie, Khaneja Navin, Glaser Steffen J, Nielsen Niels Chr
Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Aarhus C, Denmark.
J Magn Reson. 2009 Apr;197(2):120-34. doi: 10.1016/j.jmr.2008.11.020. Epub 2008 Dec 8.
We present the implementation of optimal control into the open source simulation package SIMPSON for development and optimization of nuclear magnetic resonance experiments for a wide range of applications, including liquid- and solid-state NMR, magnetic resonance imaging, quantum computation, and combinations between NMR and other spectroscopies. Optimal control enables efficient optimization of NMR experiments in terms of amplitudes, phases, offsets etc. for hundreds-to-thousands of pulses to fully exploit the experimentally available high degree of freedom in pulse sequences to combat variations/limitations in experimental or spin system parameters or design experiments with specific properties typically not covered as easily by standard design procedures. This facilitates straightforward optimization of experiments under consideration of rf and static field inhomogeneities, limitations in available or desired rf field strengths (e.g., for reduction of sample heating), spread in resonance offsets or coupling parameters, variations in spin systems etc. to meet the actual experimental conditions as close as possible. The paper provides a brief account on the relevant theory and in particular the computational interface relevant for optimization of state-to-state transfer (on the density operator level) and the effective Hamiltonian on the level of propagators along with several representative examples within liquid- and solid-state NMR spectroscopy.
我们展示了将最优控制应用于开源模拟软件包SIMPSON的过程,该软件可用于开发和优化核磁共振实验,这些实验具有广泛的应用,包括液体和固体核磁共振、磁共振成像、量子计算以及核磁共振与其他光谱技术的结合。最优控制能够在幅度、相位、偏移等方面对核磁共振实验进行高效优化,涉及数百到数千个脉冲,以充分利用脉冲序列中实验可用的高度自由度,应对实验或自旋系统参数的变化/限制,或设计具有特定特性的实验,而这些特性通常难以通过标准设计程序轻易实现。这有助于在考虑射频和静磁场不均匀性、可用或期望的射频场强限制(例如,为减少样品加热)、共振偏移或耦合参数的分布、自旋系统的变化等因素的情况下,直接优化实验,以尽可能贴近实际实验条件。本文简要介绍了相关理论,特别是与态到态转移优化(在密度算符层面)以及传播子层面有效哈密顿量相关的计算接口,并给出了液体和固体核磁共振光谱中的几个代表性示例。