Suppr超能文献

病原蛋白质组学

"Pathogeno-proteomics".

作者信息

Holzmuller Philippe, Grébaut Pascal, Brizard Jean-Paul, Berthier David, Chantal Isabelle, Bossard Géraldine, Bucheton Bruno, Vezilier Frederic, Chuchana Paul, Bras-Gonçalves Rachel, Lemesre Jean-Loup, Vincendeau Philippe, Cuny Gérard, Frutos Roger, Biron David G

机构信息

CIRAD UMR 17 [UMR 177 IRD-CIRAD], Montpellier, France.

出版信息

Ann N Y Acad Sci. 2008 Dec;1149:66-70. doi: 10.1196/annals.1428.061.

Abstract

Many scientists working on pathogens (viruses, bacteria, fungi, parasites) are betting heavily on data generated by longitudinal genomic-transcriptomic-proteomic studies to explain biochemical host-vector-pathogen interactions and thus to contribute to disease control. Availability of genome sequences of various organisms, from viruses to complex metazoans, led to the discovery of the functions of the genes themselves. The postgenomic era stimulated the development of proteomic and bioinformatics tools to identify the locations, functions, and interactions of the gene products in tissues and/or cells of living organisms. Because of the diversity of available methods and the level of integration they promote, proteomics tools are potentially able to resolve interesting issues specific not only to host-vector-pathogen interactions in cell immunobiology, but also to ecology and evolution, population biology, and adaptive processes. These new analytical tools, as all new tools, contain pitfalls directly related to experimental design, statistical treatment, and protein identification. Nevertheless, they offer the potency of building large protein-protein interaction networks for in silico analysis of novel biological entities named "interactomes," a way of modeling host-vector-pathogen interactions to define new interference strategies.

摘要

许多致力于研究病原体(病毒、细菌、真菌、寄生虫)的科学家都非常倚重纵向基因组-转录组-蛋白质组学研究所产生的数据,以解释生物化学层面的宿主-载体-病原体相互作用,从而为疾病控制做出贡献。从病毒到复杂的后生动物等各种生物体的基因组序列的可得性,促成了对基因自身功能的发现。后基因组时代推动了蛋白质组学和生物信息学工具的发展,以确定基因产物在生物体组织和/或细胞中的位置、功能及相互作用。由于可用方法的多样性以及它们所促进的整合水平,蛋白质组学工具不仅有潜力解决细胞免疫生物学中宿主-载体-病原体相互作用特有的有趣问题,还能解决生态学与进化、种群生物学及适应性过程等方面的问题。与所有新工具一样,这些新的分析工具存在与实验设计、统计处理及蛋白质鉴定直接相关的缺陷。然而,它们具备构建大型蛋白质-蛋白质相互作用网络的能力,用于对名为“相互作用组”的新型生物实体进行计算机分析,这是一种对宿主-载体-病原体相互作用进行建模以定义新干扰策略的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验