Liang Hua, Wu Hulin, Zou Guohua
Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York 14642, U.S.A.
Biometrika. 2008;95(3):773-778. doi: 10.1093/biomet/asn023.
The conventional model selection criterion AIC has been applied to choose candidate models in mixed-effects models by the consideration of marginal likelihood. Vaida and Blanchard (2005) demonstrated that such a marginal AIC and its small sample correction are inappropriate when the research focus is on clusters. Correspondingly, these authors suggested to use conditional AIC. The conditional AIC is derived under the assumptions of the variance-covariance matrix or scaled variance-covariance matrix of random effects being known. We develop a general conditional AIC but without these strong assumptions. This allows Vaida and Blanchard's conditional AIC to be applied in a wide range. Simulation studies show that the proposed method is promising.
传统的模型选择标准AIC已被应用于通过考虑边际似然性来选择混合效应模型中的候选模型。Vaida和Blanchard(2005年)证明,当研究重点是聚类时,这种边际AIC及其小样本校正并不合适。相应地,这些作者建议使用条件AIC。条件AIC是在随机效应的方差-协方差矩阵或缩放方差-协方差矩阵已知的假设下推导出来的。我们开发了一种通用的条件AIC,但没有这些强假设。这使得Vaida和Blanchard的条件AIC能够在更广泛的范围内应用。模拟研究表明,所提出的方法很有前景。