Suppr超能文献

具有潜在多元对数伽马过程的帕累托回归模型的贝叶斯变量选择及其在地震震级中的应用

Bayesian Variable Selection for Pareto Regression Models with Latent Multivariate Log Gamma Process with Applications to Earthquake Magnitudes.

作者信息

Yang Hou-Cheng, Hu Guanyu, Chen Ming-Hui

机构信息

Department of Statistics, Florida State University, Tallahassee, FL 32306, USA.

Department of Statistics, University of Connecticut, Storrs, CT 06269, USA.

出版信息

Geosciences (Basel). 2019 Apr;9(4). doi: 10.3390/geosciences9040169. Epub 2019 Apr 12.

Abstract

Generalized linear models are routinely used in many environment statistics problems such as earthquake magnitudes prediction. Hu et al. proposed Pareto regression with spatial random effects for earthquake magnitudes. In this paper, we propose Bayesian spatial variable selection for Pareto regression based on Bradley et al. and Hu et al. to tackle variable selection issue in generalized linear regression models with spatial random effects. A Bayesian hierarchical latent multivariate log gamma model framework is applied to account for spatial random effects to capture spatial dependence. We use two Bayesian model assessment criteria for variable selection including Conditional Predictive Ordinate (CPO) and Deviance Information Criterion (DIC). Furthermore, we show that these two Bayesian criteria have analytic connections with conditional AIC under the linear mixed model setting. We examine empirical performance of the proposed method via a simulation study and further demonstrate the applicability of the proposed method in an analysis of the earthquake data obtained from the United States Geological Survey (USGS).

摘要

广义线性模型经常用于许多环境统计问题,如地震震级预测。Hu等人提出了具有空间随机效应的帕累托回归用于地震震级。在本文中,我们基于Bradley等人和Hu等人的研究,提出了用于帕累托回归的贝叶斯空间变量选择方法,以解决具有空间随机效应的广义线性回归模型中的变量选择问题。应用贝叶斯分层潜在多元对数伽马模型框架来考虑空间随机效应,以捕捉空间依赖性。我们使用两种贝叶斯模型评估标准进行变量选择,包括条件预测纵坐标(CPO)和偏差信息准则(DIC)。此外,我们表明这两种贝叶斯标准在线性混合模型设置下与条件AIC有解析联系。我们通过模拟研究检验了所提出方法的实证性能,并进一步证明了所提出方法在美国地质调查局(USGS)获得的地震数据分析中的适用性。

相似文献

3
Bayesian Model Assessment in Joint Modeling of Longitudinal and Survival Data with Applications to Cancer Clinical Trials.
J Comput Graph Stat. 2017;26(1):121-133. doi: 10.1080/10618600.2015.1117472. Epub 2017 Feb 16.
4
Assessing Local Model Adequacy in Bayesian Hierarchical Models Using the Partitioned Deviance Information Criterion.
Comput Stat Data Anal. 2010 Jun 1;54(6):1657-1671. doi: 10.1016/j.csda.2010.01.025.
6
Bayesian estimation of multivariate Gaussian Markov random fields with constraint.
Stat Med. 2020 Dec 30;39(30):4767-4788. doi: 10.1002/sim.8752. Epub 2020 Sep 16.
7
Bayesian linear regression and variable selection for spectroscopic calibration.
Anal Chim Acta. 2009 Jan 5;631(1):13-21. doi: 10.1016/j.aca.2008.10.014. Epub 2008 Oct 17.
8
Bayesian model selection for spatial capture-recapture models.
Ecol Evol. 2019 Sep 30;9(20):11569-11583. doi: 10.1002/ece3.5551. eCollection 2019 Oct.
9
Bayesian Criterion Based Variable Selection.
J R Stat Soc Ser C Appl Stat. 2021 Aug;70(4):835-857. doi: 10.1111/rssc.12488. Epub 2021 Aug 7.
10
Bayesian model selection in linear mixed models for longitudinal data.
J Appl Stat. 2019 Aug 22;47(5):890-913. doi: 10.1080/02664763.2019.1657814. eCollection 2020.

引用本文的文献

1
Accuracy analysis of dam deformation monitoring and correction of refraction with robotic total station.
PLoS One. 2021 May 6;16(5):e0251281. doi: 10.1371/journal.pone.0251281. eCollection 2021.

本文引用的文献

3
A Note on Conditional AIC for Linear Mixed-Effects Models.
Biometrika. 2008;95(3):773-778. doi: 10.1093/biomet/asn023.
4
Model selection in ecology and evolution.
Trends Ecol Evol. 2004 Feb;19(2):101-8. doi: 10.1016/j.tree.2003.10.013.
5
Power-law time distribution of large earthquakes.
Phys Rev Lett. 2003 May 9;90(18):188501. doi: 10.1103/PhysRevLett.90.188501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验