Yang Hou-Cheng, Hu Guanyu, Chen Ming-Hui
Department of Statistics, Florida State University, Tallahassee, FL 32306, USA.
Department of Statistics, University of Connecticut, Storrs, CT 06269, USA.
Geosciences (Basel). 2019 Apr;9(4). doi: 10.3390/geosciences9040169. Epub 2019 Apr 12.
Generalized linear models are routinely used in many environment statistics problems such as earthquake magnitudes prediction. Hu et al. proposed Pareto regression with spatial random effects for earthquake magnitudes. In this paper, we propose Bayesian spatial variable selection for Pareto regression based on Bradley et al. and Hu et al. to tackle variable selection issue in generalized linear regression models with spatial random effects. A Bayesian hierarchical latent multivariate log gamma model framework is applied to account for spatial random effects to capture spatial dependence. We use two Bayesian model assessment criteria for variable selection including Conditional Predictive Ordinate (CPO) and Deviance Information Criterion (DIC). Furthermore, we show that these two Bayesian criteria have analytic connections with conditional AIC under the linear mixed model setting. We examine empirical performance of the proposed method via a simulation study and further demonstrate the applicability of the proposed method in an analysis of the earthquake data obtained from the United States Geological Survey (USGS).
广义线性模型经常用于许多环境统计问题,如地震震级预测。Hu等人提出了具有空间随机效应的帕累托回归用于地震震级。在本文中,我们基于Bradley等人和Hu等人的研究,提出了用于帕累托回归的贝叶斯空间变量选择方法,以解决具有空间随机效应的广义线性回归模型中的变量选择问题。应用贝叶斯分层潜在多元对数伽马模型框架来考虑空间随机效应,以捕捉空间依赖性。我们使用两种贝叶斯模型评估标准进行变量选择,包括条件预测纵坐标(CPO)和偏差信息准则(DIC)。此外,我们表明这两种贝叶斯标准在线性混合模型设置下与条件AIC有解析联系。我们通过模拟研究检验了所提出方法的实证性能,并进一步证明了所提出方法在美国地质调查局(USGS)获得的地震数据分析中的适用性。