Miller Marvin J, Zhu Helen, Xu Yanping, Wu Chunrui, Walz Andrew J, Vergne Anne, Roosenberg John M, Moraski Garrett, Minnick Albert A, McKee-Dolence Julia, Hu Jingdan, Fennell Kelley, Kurt Dolence E, Dong Li, Franzblau Scott, Malouin Francois, Möllmann Ute
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
Biometals. 2009 Feb;22(1):61-75. doi: 10.1007/s10534-008-9185-0. Epub 2009 Jan 7.
Pathogenic microbes rapidly develop resistance to antibiotics. To keep ahead in the "microbial war", extensive interdisciplinary research is needed. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (ie., beta-lactamase) and even induction of efflux mechanisms. A combination of chemical syntheses, microbiological and biochemical studies demonstrate that the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron-chelating compounds called siderophores. Our studies, and those of others, demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery ("Trojan Horse" antibiotics) and induction of iron limitation/starvation (Development of new agents to block iron assimilation). Recent extensions of the use of siderophores for the development of novel potent and selective anticancer agents are also described.
致病微生物会迅速产生对抗生素的耐药性。为了在“微生物战争”中保持领先,需要进行广泛的跨学科研究。耐药性的一个主要原因是抗生素的过度使用,这可能导致微生物通透性改变、药物靶点结合位点改变、诱导破坏抗生素的酶(即β-内酰胺酶),甚至诱导外排机制。化学合成、微生物学和生物化学研究的结合表明,微生物对铁同化的已知关键依赖性可用于生长和毒力,这可被用于开发新的抗生素治疗方法。铁的识别和主动转运依赖于称为铁载体的微生物选择性铁螯合化合物的生物合成和使用。我们的研究以及其他人的研究表明,铁载体及其类似物可用于铁转运介导的药物递送(“特洛伊木马”抗生素)以及诱导铁限制/饥饿(开发阻断铁同化的新药物)。还描述了铁载体在开发新型强效和选择性抗癌药物方面的最新应用扩展。