Suppr超能文献

利用微生物铁同化过程开发新型抗生素并为新型抗癌药物设计提供灵感。

Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents.

作者信息

Miller Marvin J, Zhu Helen, Xu Yanping, Wu Chunrui, Walz Andrew J, Vergne Anne, Roosenberg John M, Moraski Garrett, Minnick Albert A, McKee-Dolence Julia, Hu Jingdan, Fennell Kelley, Kurt Dolence E, Dong Li, Franzblau Scott, Malouin Francois, Möllmann Ute

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Biometals. 2009 Feb;22(1):61-75. doi: 10.1007/s10534-008-9185-0. Epub 2009 Jan 7.

Abstract

Pathogenic microbes rapidly develop resistance to antibiotics. To keep ahead in the "microbial war", extensive interdisciplinary research is needed. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (ie., beta-lactamase) and even induction of efflux mechanisms. A combination of chemical syntheses, microbiological and biochemical studies demonstrate that the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron-chelating compounds called siderophores. Our studies, and those of others, demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery ("Trojan Horse" antibiotics) and induction of iron limitation/starvation (Development of new agents to block iron assimilation). Recent extensions of the use of siderophores for the development of novel potent and selective anticancer agents are also described.

摘要

致病微生物会迅速产生对抗生素的耐药性。为了在“微生物战争”中保持领先,需要进行广泛的跨学科研究。耐药性的一个主要原因是抗生素的过度使用,这可能导致微生物通透性改变、药物靶点结合位点改变、诱导破坏抗生素的酶(即β-内酰胺酶),甚至诱导外排机制。化学合成、微生物学和生物化学研究的结合表明,微生物对铁同化的已知关键依赖性可用于生长和毒力,这可被用于开发新的抗生素治疗方法。铁的识别和主动转运依赖于称为铁载体的微生物选择性铁螯合化合物的生物合成和使用。我们的研究以及其他人的研究表明,铁载体及其类似物可用于铁转运介导的药物递送(“特洛伊木马”抗生素)以及诱导铁限制/饥饿(开发阻断铁同化的新药物)。还描述了铁载体在开发新型强效和选择性抗癌药物方面的最新应用扩展。

相似文献

3
Design and Syntheses of New Antibiotics Inspired by Nature's Quest for Iron in an Oxidative Climate.
Acc Chem Res. 2021 Apr 6;54(7):1646-1661. doi: 10.1021/acs.accounts.1c00004. Epub 2021 Mar 8.
4
Chemistry and Biology of Siderophores from Marine Microbes.
Mar Drugs. 2019 Sep 29;17(10):562. doi: 10.3390/md17100562.
5
Exploiting bacterial iron acquisition: siderophore conjugates.
Future Med Chem. 2012 Mar;4(3):297-313. doi: 10.4155/fmc.11.191.
6
Bacterial Siderophores and Their Potential Applications: A Review.
Curr Mol Pharmacol. 2020;13(4):295-305. doi: 10.2174/1874467213666200518094445.
7
Species selectivity of new siderophore-drug conjugates that use specific iron uptake for entry into bacteria.
Antimicrob Agents Chemother. 1996 Nov;40(11):2610-7. doi: 10.1128/AAC.40.11.2610.
8
Siderophores as drug delivery agents: application of the "Trojan Horse" strategy.
Biometals. 2009 Aug;22(4):615-24. doi: 10.1007/s10534-009-9219-2. Epub 2009 Feb 12.
10

引用本文的文献

1
The kinase Bud32 regulates iron homeostasis in fungal pathogen .
Front Immunol. 2025 Jul 25;16:1624237. doi: 10.3389/fimmu.2025.1624237. eCollection 2025.
2
Iron acquisition strategies in pathogenic fungi.
mBio. 2025 Jun 11;16(6):e0121125. doi: 10.1128/mbio.01211-25. Epub 2025 May 20.
3
sp. ZY1 antagonizes pathogenic via iron competition.
Appl Environ Microbiol. 2025 May 21;91(5):e0000925. doi: 10.1128/aem.00009-25. Epub 2025 Apr 24.
5
Understanding the Potential and Risk of Bacterial Siderophores in Cancer.
Front Oncol. 2022 Jun 17;12:867271. doi: 10.3389/fonc.2022.867271. eCollection 2022.
6
Antibacterial and Antibiofilm Activities of Chlorogenic Acid Against .
Front Microbiol. 2022 May 4;13:885092. doi: 10.3389/fmicb.2022.885092. eCollection 2022.
7
Tracking Uptake and Metabolism of Xenometallomycins Using a Multi-Isotope Tagging Strategy.
ACS Infect Dis. 2022 Apr 8;8(4):878-888. doi: 10.1021/acsinfecdis.2c00005. Epub 2022 Mar 23.
8
β-lactam Resistance in : Current Status, Future Prospects.
Pathogens. 2021 Dec 18;10(12):1638. doi: 10.3390/pathogens10121638.
9
Galbofloxacin: a xenometal-antibiotic with potent and efficacy against .
Chem Sci. 2021 Oct 19;12(43):14546-14556. doi: 10.1039/d1sc04283a. eCollection 2021 Nov 10.

本文引用的文献

1
Syntheses and biological activity of amamistatin B and analogs.
J Org Chem. 2008 Feb 1;73(3):1018-24. doi: 10.1021/jo7020532. Epub 2008 Jan 4.
2
Strategic paradigm shifts in the antimicrobial drug discovery process of the 21st century.
Infect Disord Drug Targets. 2007 Sep;7(3):230-7. doi: 10.2174/187152607782110040.
3
Siderophore-based iron acquisition and pathogen control.
Microbiol Mol Biol Rev. 2007 Sep;71(3):413-51. doi: 10.1128/MMBR.00012-07.
4
Energy-coupled outer membrane transport proteins and regulatory proteins.
Biometals. 2007 Jun;20(3-4):219-31. doi: 10.1007/s10534-006-9072-5. Epub 2007 Mar 17.
5
Antitubercular nucleosides that inhibit siderophore biosynthesis: SAR of the glycosyl domain.
J Med Chem. 2006 Dec 28;49(26):7623-35. doi: 10.1021/jm061068d.
6
Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis.
Nat Chem Biol. 2005 Jun;1(1):29-32. doi: 10.1038/nchembio706. Epub 2005 May 24.
8
Molecular mechanism of lipopeptide presentation by CD1a.
Immunity. 2005 Feb;22(2):209-19. doi: 10.1016/j.immuni.2004.12.009.
9
Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.).
Fortschr Chem Org Naturst. 2004;87:81-237. doi: 10.1007/978-3-7091-0581-8_2.
10
T cell activation by lipopeptide antigens.
Science. 2004 Jan 23;303(5657):527-31. doi: 10.1126/science.1089353.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验