Hemmateenejad Bahram, Mehdipour Ahmad R, Miri Ramin, Shamsipur Mojtaba
Department of Chemistry, Shiraz University, Shiraz, Iran.
J Comput Chem. 2009 Oct;30(13):2001-9. doi: 10.1002/jcc.21198.
When using quantum chemical descriptors in quantitative structure-activity relationship (QSAR) studies, there is always a challenge between accuracy of calculation and the complexity and time of computation. Very recently, we proposed the use of substituents electronic descriptors (SEDs) instead of the electronic properties of whole molecule as new and expedite source of electronic descriptors. For instance, SED parameters can be calculated with the highest degree of accuracy in very low computation time. In this article, we used SED parameters in QSAR modeling of six different biological data sets including (i) the dissociation constants for a set of substituted imidazolines, (ii) the pKa of imidazoles, (iii) inverse agonist activity of indoles, (iv) the influenza virus inhibition activities of benzimidazoles, (v) inhibition of alcohol dehydrogenase by amides, and (vi) the natriuretic activity of sulfonamide. For poly-substituted molecules, SED parameters produce a vector of electronic descriptors for each substituent, and thus a matrix of SED parameters is obtained for each molecule. Consequently, a three-dimensional (3D) array is obtained by staking the descriptor data matrices of molecules beside each others. In addition to simple unfolding of the SED parameters, molecular maps of atom-level properties (MOLMAP) approach, as a novel data analysis method, was also applied to transfer 3D array of SED into new two-dimensional parameters using Kohonen network, following by genetic algorithm-based partial least square (GA-PLS) to connect a quantitative relationship between the Kohonen scores and biological activity. Accurate QSAR models were obtained by both approaches. However, the superiority of three-way analysis of SED parameters based on MOLMAP approach with respect to simple unfolding was obtained.
在定量构效关系(QSAR)研究中使用量子化学描述符时,计算精度与计算复杂性和时间之间始终存在挑战。最近,我们提议使用取代基电子描述符(SEDs),而非整个分子的电子性质,作为电子描述符的新的快速来源。例如,SED参数可以在非常短的计算时间内以最高精度计算出来。在本文中,我们将SED参数用于六个不同生物数据集的QSAR建模,包括:(i)一组取代咪唑啉的解离常数;(ii)咪唑的pKa;(iii)吲哚的反向激动剂活性;(iv)苯并咪唑对流感病毒的抑制活性;(v)酰胺对乙醇脱氢酶的抑制作用;以及(vi)磺胺的利钠活性。对于多取代分子,SED参数为每个取代基生成一个电子描述符向量,因此为每个分子获得一个SED参数矩阵。结果,通过将分子的描述符数据矩阵彼此堆叠,得到一个三维(3D)数组。除了简单展开SED参数外,作为一种新颖的数据分析方法,原子水平性质分子图谱(MOLMAP)方法也被应用,通过Kohonen网络将SED的3D数组转换为新的二维参数,随后采用基于遗传算法的偏最小二乘法(GA-PLS)来建立Kohonen得分与生物活性之间的定量关系。两种方法都获得了准确的QSAR模型。然而,可以看出基于MOLMAP方法的SED参数三元分析相对于简单展开具有优越性。