Kim Mun Ju, Maly Ivan V
Department of Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.
PLoS Comput Biol. 2009 Jan;5(1):e1000260. doi: 10.1371/journal.pcbi.1000260. Epub 2009 Jan 9.
T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation.
免疫系统中的T杀伤细胞通过直接的细胞间相互作用来清除病毒感染细胞和肿瘤细胞。T细胞内杀伤装置重新定向至与靶细胞的T细胞界面,确保了免疫反应的特异性。杀伤装置也可在细胞间界面旁振荡。当T细胞同时与两个靶细胞接触时,杀伤装置可在两个界面区域之间振荡。这种振荡是细胞运动中最显著的例子之一,给显微镜观察者一种细胞烦躁不定、缺乏机制的印象。我们构建了一个由分子马达驱动的微管细胞骨架的三维数值生物力学模型,该模型可定位杀伤装置。该模型表明,皮质牵拉机制确实能够在一系列条件下将杀伤装置定向到功能位置。该模型还预测了这种普遍假设的T细胞极化机制在实验上可测试的局限性。重新定向后,数值解在没有任何外部引导或随机性的情况下呈现出复杂、多方向、多周期和持续的振荡。这些计算结果表明,T杀伤细胞中显著活跃的目标游动具有纯粹的机械和确定性解释。