Hornak Ivan, Rieger Heiko
Center for Biophysics (ZBP) and Department of Theoretical Physics, Saarland University, Saarbrücken, Germany.
Center for Biophysics (ZBP) and Department of Theoretical Physics, Saarland University, Saarbrücken, Germany.
Biophys J. 2020 Apr 7;118(7):1733-1748. doi: 10.1016/j.bpj.2020.01.045. Epub 2020 Feb 15.
Cytotoxic T lymphocytes (T) and natural killer cells are the main cytotoxic killer cells of the human body to eliminate pathogen-infected or tumorigenic cells (i.e., target cells). Once a natural killer or T cell has identified a target cell, they form a tight contact zone, the immunological synapse (IS). One then observes a repolarization of the cell involving the rotation of the microtubule (MT) cytoskeleton and a movement of the MT organizing center (MTOC) to a position that is just underneath the plasma membrane at the center of the IS. Concomitantly, a massive relocation of organelles attached to MTs is observed, including the Golgi apparatus, lytic granules, and mitochondria. Because the mechanism of this relocation is still elusive, we devise a theoretical model for the molecular-motor-driven motion of the MT cytoskeleton confined between plasma membrane and nucleus during T cell polarization. We analyze different scenarios currently discussed in the literature, the cortical sliding and capture-shrinkage mechanisms, and compare quantitative predictions about the spatiotemporal evolution of MTOC position and MT cytoskeleton morphology with experimental observations. The model predicts the experimentally observed biphasic nature of the repositioning due to an interplay between MT cytoskeleton geometry and motor forces and confirms the dominance of the capture-shrinkage over the cortical sliding mechanism when the MTOC and IS are initially diametrically opposed. We also find that the two mechanisms act synergistically, thereby reducing the resources necessary for repositioning. Moreover, it turns out that the localization of dyneins in the peripheral supramolecular activation cluster facilitates their interaction with the MTs. Our model also opens a way to infer details of the dynein distribution from the experimentally observed features of the MT cytoskeleton dynamics. In a subsequent publication, we will address the issue of general initial configurations and situations in which the T cell established two ISs.
细胞毒性T淋巴细胞(T细胞)和自然杀伤细胞是人体消除病原体感染或致瘤细胞(即靶细胞)的主要细胞毒性杀伤细胞。一旦自然杀伤细胞或T细胞识别出靶细胞,它们就会形成一个紧密的接触区,即免疫突触(IS)。接着可以观察到细胞的重新极化,这涉及微管(MT)细胞骨架的旋转以及MT组织中心(MTOC)移动到IS中心质膜正下方的位置。同时,还观察到附着在MT上的细胞器大量重新定位,包括高尔基体、溶酶体颗粒和线粒体。由于这种重新定位的机制仍然难以捉摸,我们设计了一个理论模型,用于描述T细胞极化过程中MT细胞骨架在质膜和细胞核之间由分子马达驱动的运动。我们分析了文献中目前讨论的不同情况,即皮层滑动和捕获-收缩机制,并将关于MTOC位置和MT细胞骨架形态的时空演变的定量预测与实验观察结果进行了比较。该模型预测了由于MT细胞骨架几何形状和动力之间的相互作用而在实验中观察到的重新定位的双相性质,并证实了当MTOC和IS最初处于直径相对位置时,捕获-收缩机制比皮层滑动机制占主导地位。我们还发现这两种机制协同作用,从而减少了重新定位所需的资源。此外,事实证明动力蛋白在外周超分子激活簇中的定位促进了它们与MT的相互作用。我们的模型还为从MT细胞骨架动力学的实验观察特征推断动力蛋白分布的细节开辟了一条途径。在随后的一篇论文中,我们将探讨一般初始构型以及T细胞建立两个IS的情况的问题。