Suppr超能文献

使用遗传算法对金属有机框架的力场进行系统的第一性原理参数化。

Systematic first principles parameterization of force fields for metal-organic frameworks using a genetic algorithm approach.

作者信息

Tafipolsky Maxim, Schmid Rochus

机构信息

Lehrstuhl fur Anorganische Chemie 2, Organometallics and Materials Chemistry, Ruhr-Universitat Bochum, Universitatsstrasse 150, D-44780 Bochum, Germany.

出版信息

J Phys Chem B. 2009 Feb 5;113(5):1341-52. doi: 10.1021/jp807487f.

Abstract

A systematic strategy is proposed to derive the necessary force field parameters directly from first principles calculations of nonperiodic model systems to reproduce both the structure and curvature of the reference potential energy surface. The parameters are determined using a genetic algorithm combined with a novel fitness criterion based on a representation of structure and curvature in a set of redundant internal coordinates. Due to the efficiency of this approach it is possible to abandon the need for transferability of the parameters. The method is targeted for the application on metal-organic frameworks (MOFs), where parameters for molecular mechanics force fields are often not available, because of the wide range of possible inorganic fragments involved. The scheme is illustrated for Zn4O-based IRMOF materials on the example of MOF-5. In a "building block" approach parameters are derived for the two model systems basic zinc formate (Zn4O(O2CH)6), and dilithium terephthalate with reference data obtained from density functional theory. The resulting potential gives excellent agreement with the structure, vibrational frequencies, thermal behavior and elastic constants of the periodic MOF-5.

摘要

提出了一种系统策略,可直接从非周期性模型系统的第一性原理计算中推导必要的力场参数,以重现参考势能面的结构和曲率。使用遗传算法结合基于一组冗余内坐标中的结构和曲率表示的新颖适应度标准来确定参数。由于这种方法的效率,可以摒弃对参数可转移性的需求。该方法旨在应用于金属有机框架(MOF),由于涉及的无机片段范围广泛,分子力学力场的参数通常不可用。以MOF-5为例,对基于Zn4O的IRMOF材料说明了该方案。在“构建块”方法中,根据从密度泛函理论获得的参考数据,为两个模型系统——碱式甲酸锌(Zn4O(O2CH)6)和对苯二甲酸二锂——推导参数。所得势能与周期性MOF-5的结构、振动频率、热行为和弹性常数具有极好的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验