Wieme J, Vanduyfhuys L, Rogge S M J, Waroquier M, Van Speybroeck V
Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium.
J Phys Chem C Nanomater Interfaces. 2016 Jul 14;120(27):14934-14947. doi: 10.1021/acs.jpcc.6b04422. Epub 2016 Jun 13.
The flexibility of three MIL-47(V)-type materials (MIL-47, COMOC-2, and COMOC-3) has been explored by constructing the pressure versus volume and free energy versus volume profiles at various temperatures ranging from 100 to 400 K. This is done with first-principles-based force fields using the recently proposed QuickFF parametrization protocol. Specific terms were added for the materials at hand to describe the asymmetry of the one-dimensional vanadium-oxide chain and to account for the flexibility of the organic linkers. The force fields are used in a series of molecular dynamics simulations at fixed volumes but varying unit cell shapes. The three materials show a distinct pressure-volume behavior, which underlines the ability to tune the mechanical properties by varying the linkers toward different applications such as nanosprings, dampers, and shock absorbers.
通过构建100至400K不同温度下的压力与体积以及自由能与体积曲线,研究了三种MIL-47(V)型材料(MIL-47、COMOC-2和COMOC-3)的柔韧性。这是使用最近提出的QuickFF参数化协议,基于第一性原理的力场来完成的。针对手头的材料添加了特定项,以描述一维钒氧化物链的不对称性,并考虑有机连接体的柔韧性。这些力场用于一系列固定体积但晶胞形状不同的分子动力学模拟。这三种材料表现出明显的压力-体积行为,突出了通过改变连接体来调整机械性能以用于不同应用(如纳米弹簧、减震器和缓冲器)的能力。