Borm George F, Donders A Rogier T
Department of Epidemiology, Biostatistics and HTA (EBH 133), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
J Clin Epidemiol. 2009 Aug;62(8):825-830.e10. doi: 10.1016/j.jclinepi.2008.08.010. Epub 2009 Jan 10.
To estimate the extent to which the practice of periodically updating meta-analyses causes inflation of the type I error and then to compare the estimate with the inflation caused by publication bias. We also present a simple method to adjust for the inflation associated with updating meta-analyses.
Simulations were used to estimate the error rates.
In general, updating meta-analyses caused 2- to 5-fold inflation of the type I error rates, which exceeded the inflation caused by publication bias. As a rule of thumb, the results of a meta-analysis are robust up to 5, 10, 15, or 22 updates, if the P-value multiplied by 4, 6, 8, or 10 remains below the desired significance level.
Meta-analyses are likely to be updated until a clear conclusion is reached. Therefore, it is important to take the inflation of the error rate into account to interpret the results correctly.
评估定期更新荟萃分析的做法会在多大程度上导致I型错误率膨胀,然后将该评估结果与发表偏倚导致的膨胀情况进行比较。我们还提出了一种简单方法来校正与更新荟萃分析相关的错误率膨胀。
采用模拟方法来估计错误率。
一般而言,更新荟萃分析会使I型错误率膨胀2至5倍,这超过了发表偏倚导致的膨胀程度。根据经验法则,如果P值乘以4、6、8或10仍低于期望的显著性水平,那么荟萃分析的结果在进行5次、10次、15次或22次更新之前都是稳健的。
荟萃分析可能会一直更新,直到得出明确结论。因此,为了正确解释结果,考虑错误率膨胀情况很重要。