Honegger Annemarie, Malebranche Alain Daniel, Röthlisberger Daniela, Plückthun Andreas
Biochemisches Institut der Universität Zürich, Switzerland.
Protein Eng Des Sel. 2009 Mar;22(3):121-34. doi: 10.1093/protein/gzn077. Epub 2009 Jan 10.
Antibody variable domains differ considerably in stability. Single-chain Fv (scFv) fragments derived from natural repertoires frequently lack the high stability needed for therapeutic application, necessitating reengineering not only to humanize their sequence, but also to improve their biophysical properties. The human V(H)3 domain has been identified as having the best biophysical properties among human subtypes. However, complementarity determining region (CDR) grafts from highly divergent V(H) domains to huV(H)3 frequently fail to reach its superior stability. In previous experiments involving a CDR graft from a murine V(H)9 domain of very poor stability to huV(H)3, a hybrid V(H) framework was obtained which combines the lower core residues of muV(H)9 with the surface residues of huV(H)3. It resulted in a scFv with far better biophysical properties than the corresponding grafts to the consensus huV(H)3 framework. To better understand the origin of the superior properties of the hybrid framework, we constructed further hybrids, but now in the context of the consensus CDR-H1 and -H2 of the original human V(H)3 domain. The new hybrids included elements from either murine V(H)9, human V(H)1 or human V(H)5 domains. From guanidinium chloride-induced equilibrium denaturation measurements, kinetic denaturation experiments, measurements of heat-induced aggregation and comparison of soluble expression yield in Escherichia coli, we conclude that the optimal V(H) framework is CDR-dependent. The present work pinpoints structural features responsible for this dependency and helps to explain why the immune system uses more than one framework with different structural subtypes in framework 1 to optimally support widely different CDRs.
抗体可变结构域在稳定性上存在很大差异。源自天然文库的单链Fv(scFv)片段常常缺乏治疗应用所需的高稳定性,这不仅需要对其序列进行人源化改造,还需改善其生物物理特性。人V(H)3结构域已被确定在人类亚型中具有最佳的生物物理特性。然而,将高度不同的V(H)结构域的互补决定区(CDR)移植到huV(H)3结构域时,常常无法达到其卓越的稳定性。在先前的实验中,将稳定性非常差的鼠源V(H)9结构域的CDR移植到huV(H)3结构域,获得了一种杂合V(H)框架,该框架将muV(H)9的较低核心残基与huV(H)3的表面残基结合在一起。这产生了一种scFv,其生物物理特性远比移植到共有huV(H)3框架的相应产物要好。为了更好地理解杂合框架卓越特性的来源,我们构建了更多的杂合体,但这次是在原始人V(H)3结构域的共有CDR-H1和-H2的背景下进行的。新的杂合体包含来自鼠源V(H)9、人V(H)1或人V(H)5结构域的元件。通过氯化胍诱导的平衡变性测量、动力学变性实验、热诱导聚集测量以及在大肠杆菌中的可溶性表达产量比较,我们得出最佳的V(H)框架依赖于CDR。目前的工作明确了导致这种依赖性的结构特征,并有助于解释为什么免疫系统在框架1中使用不止一种具有不同结构亚型的框架来最佳地支持广泛不同的CDR。