Barbar Elie, Lehoux Jean-Guy, Lavigne Pierre
Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4.
Mol Cell Endocrinol. 2009 Mar 5;300(1-2):89-93. doi: 10.1016/j.mce.2008.12.007. Epub 2008 Dec 24.
The steroidogenic acute regulatory (StAR) protein plays a crucial role in steroidogenesis, as it accelerates the transport of cholesterol to the inner mitochondrial membrane where the cytochrome P450scc enzyme is located. Mutations in the StAR gene can lead to lipoid congenital adrenal hyperplasia (LCAH), a disease that is fatal if not treated with hormone replacement therapy. Solving the structure of StAR is an important aspect of understanding LCAH. Point mutations or truncations in the StAR gene produce a partial to non-functional protein that hinders the StAR-induced delivery of cholesterol to the mitochondria during an acute hormonal stimulation of steroidogenic cells. So far, homology modeling, structure-based thermodynamics and biophysical studies have allowed us to propose the existence of an open state of StAR where the C-terminal alpha-helix 4 undergoes partial unfolding. This may act as a gating mechanism to the cholesterol binding site. Once bound, cholesterol leads to the stabilization and the refolding of alpha-helix 4, and eventually to the interaction with an import complex at the surface of the mitochondria. Though the current homology models have proven useful in understanding StAR function, only the full determination of the 3D structure of the apo- and holo-states will further validate this two-state model. In this context, we have used solution-state nuclear magnetic resonance (NMR) and obtained high-resolution (1)H-(15)N-HSQC spectra of StAR in its apo- and holo-states at physiological pH. Both spectra displayed well-dispersed resonances. However, key differences are observed on the spectra which indicate that both states have stable but slightly different tertiary structures. In conjunction with the binding/activity assays and biophysical methods, this original NMR data constitutes another structural step into the validation of the two-state model and the three-dimensional structure of StAR.
类固醇生成急性调节(StAR)蛋白在类固醇生成过程中起着关键作用,因为它能加速胆固醇向线粒体内膜的转运,而细胞色素P450scc酶就位于线粒体内膜上。StAR基因的突变可导致类脂性先天性肾上腺增生(LCAH),如果不进行激素替代治疗,这种疾病会致命。解析StAR的结构是理解LCAH的一个重要方面。StAR基因中的点突变或截短会产生部分功能或无功能的蛋白质,这会在类固醇生成细胞受到急性激素刺激时阻碍StAR诱导的胆固醇向线粒体的传递。到目前为止,同源建模、基于结构的热力学和生物物理研究使我们能够提出StAR存在一种开放状态,其中C端α螺旋4会部分展开。这可能作为胆固醇结合位点的一种门控机制。一旦结合,胆固醇会导致α螺旋4的稳定和重新折叠,并最终与线粒体表面的一种导入复合物相互作用。尽管目前的同源模型已被证明有助于理解StAR的功能,但只有完全确定脱辅基和结合配体状态的三维结构才能进一步验证这种双态模型。在此背景下,我们使用了溶液态核磁共振(NMR)技术,并在生理pH条件下获得了StAR脱辅基和结合配体状态的高分辨率(1)H - (15)N - HSQC谱。两种谱都显示出分散良好的共振峰。然而,在谱图上观察到了关键差异,这表明两种状态都具有稳定但略有不同的三级结构。结合结合/活性测定和生物物理方法,这些原始的NMR数据构成了验证双态模型和StAR三维结构的又一个结构步骤。