Meyer Tim, de la Cruz Xavier, Orozco Modesto
Joint IRB-BSC Program on Computational Biology, Institut de Recerca Biomèdica, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain.
Structure. 2009 Jan 14;17(1):88-95. doi: 10.1016/j.str.2008.11.006.
Extended all-atom molecular dynamics simulations on all protein metafolds have been performed to obtain a complete picture of the gas phase proteome. The structural atlas of the gas phase proteome obtained here shows an unexpected maintenance of the global and local structure and of the general deformability pattern upon transfer to the gas phase under electrospray conditions. Despite a general compression, the solution structure can be easily very well recognized from the gas phase one, and most structural details, such as secondary structure, are well preserved upon vaporization. Rehydration of the gas phase protein leads in most cases to a very fast transition from gas phase to solution structure. Overall, our massive analysis (over 4 micros in solution and over 12 micros in the gas phase) demonstrates that solution-like structures can be determined by using mass spectroscopy and related techniques to obtain fast approximations to the solution structure.
已对所有蛋白质元折叠进行了扩展全原子分子动力学模拟,以全面了解气相蛋白质组。此处获得的气相蛋白质组结构图谱显示,在电喷雾条件下转移到气相时,整体和局部结构以及一般可变形性模式意外地得以维持。尽管总体上有压缩,但溶液结构在气相结构中仍很容易被清晰识别,并且大多数结构细节,如二级结构,在汽化时都能很好地保留下来。气相蛋白质的再水化在大多数情况下会导致从气相到溶液结构的非常快速的转变。总体而言,我们的大量分析(在溶液中超过4微秒,在气相中超过12微秒)表明,可以使用质谱和相关技术来确定类似溶液的结构,从而快速近似溶液结构。