Porrini Massimiliano, Rosu Frédéric, Rabin Clémence, Darré Leonardo, Gómez Hansel, Orozco Modesto, Gabelica Valérie
INSERM, CNRS, Université de Bordeaux, Acides Nucléiques Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607 Pessac, France.
CNRS, INSERM, Université de Bordeaux, Institut Européen de Chimie et Biologie (IECB, UMS3033, US001), 2 rue Robert Escarpit, 33607 Pessac, France.
ACS Cent Sci. 2017 May 24;3(5):454-461. doi: 10.1021/acscentsci.7b00084. Epub 2017 Apr 26.
We report on the fate of nucleic acids conformation in the gas phase as sampled using native mass spectrometry coupled to ion mobility spectrometry. On the basis of several successful reports for proteins and their complexes, the technique has become popular in structural biology, and the conformation survival becomes more and more taken for granted. Surprisingly, we found that DNA and RNA duplexes, at the electrospray charge states naturally obtained from native solution conditions (≥100 mM aqueous NHOAc), are significantly more compact in the gas phase compared to the canonical solution structures. The compaction is observed for all duplex sizes (gas-phase structures are more compact than canonical B-helices by ∼20% for 12-bp, and by up to ∼30% for 36-bp duplexes), and for DNA and RNA alike. Molecular modeling (density functional calculations on small helices, semiempirical calculations on up to 12-bp, and molecular dynamics on up to 36-bp duplexes) demonstrates that the compaction is due to phosphate group self-solvation prevailing over Coulomb repulsion. Molecular dynamics simulations starting from solution structures do not reproduce the experimental compaction. To be experimentally relevant, molecular dynamics sampling should reflect the progressive structural rearrangements occurring during desolvation. For nucleic acid duplexes, the compaction observed for low charge states results from novel phosphate-phosphate hydrogen bonds formed across both grooves at the very late stages of electrospray.
我们报道了使用与离子淌度光谱联用的原生质谱法对气相中核酸构象的研究结果。基于蛋白质及其复合物的多项成功报道,该技术在结构生物学中已变得很流行,并且构象的保留越来越被视为理所当然。令人惊讶的是,我们发现,在从原生溶液条件(≥100 mM乙酸铵水溶液)自然获得的电喷雾电荷状态下,DNA和RNA双链体在气相中的结构比标准溶液结构明显更紧凑。对于所有双链体大小(气相结构比标准B型螺旋对于12碱基对的双链体紧凑约20%,对于36碱基对的双链体紧凑高达约30%)以及DNA和RNA均观察到了这种压缩现象。分子建模(对小螺旋进行密度泛函计算,对长达12碱基对的双链体进行半经验计算,对长达36碱基对的双链体进行分子动力学模拟)表明,压缩是由于磷酸基团的自溶剂化作用胜过库仑排斥力。从溶液结构开始的分子动力学模拟无法重现实验中的压缩现象。为了与实验相关,分子动力学采样应反映去溶剂化过程中发生的逐步结构重排。对于核酸双链体,在低电荷状态下观察到的压缩是由于在电喷雾的非常后期阶段在两条沟中形成了新的磷酸 - 磷酸氢键。