Suppr超能文献

小斑鳐(Leucoraja erinacea)肝脏对锰的摄取及胆汁对锰的排泄

Hepatic uptake and biliary excretion of manganese in the little skate, Leucoraja erinacea.

作者信息

Madejczyk Michael S, Boyer James L, Ballatori Nazzareno

机构信息

Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.

出版信息

Comp Biochem Physiol C Toxicol Pharmacol. 2009 May;149(4):566-71. doi: 10.1016/j.cbpc.2008.12.009. Epub 2008 Dec 24.

Abstract

The liver is a major organ involved in regulating whole body manganese (Mn) homeostasis; however, the mechanisms of Mn transport across the hepatocyte basolateral and canalicular membranes remain poorly defined. To gain insight into these transport steps, the present study measured hepatic uptake and biliary excretion of Mn in an evolutionarily primitive marine vertebrate, the elasmobranch Leucoraja erinacea, the little skate. Mn was rapidly removed from the recirculating perfusate of isolated perfused skate livers in a dose-dependent fashion; however, only a small fraction was released into bile (<2% in 6 h). Mn was also rapidly taken up by freshly isolated skate hepatocytes in culture. Mn uptake was inhibited by a variety of divalent metals, but not by cesium. Analysis of the concentration-dependence of Mn uptake revealed of two components, with apparent K(m) values 1.1+/-0.1 microM and 112+/-29 microM. The K(m) value for the high-affinity component was similar to the measured skate blood Mn concentration, 1.9+/-0.5 microM. Mn uptake was reduced by nearly half when bicarbonate was removed from the culture medium, but was unaffected by a change in pH from 6.5 to 8.5, or by substitution of Na with Li or K. Mn efflux from the hepatocytes was also rapid, and was inhibited when cells were treated with 0.5 mM 2,4-dinitrophenol to deplete ATP levels. These data indicate that skate liver has efficient mechanisms for removing Mn from the sinusoidal circulation, whereas overall biliary excretion is low and appears to be mediated in part by an ATP-sensitive mechanism.

摘要

肝脏是参与调节全身锰(Mn)稳态的主要器官;然而,锰跨肝细胞基底外侧膜和胆小管膜转运的机制仍不清楚。为深入了解这些转运步骤,本研究测量了一种进化上原始的海洋脊椎动物——板鳃亚纲动物小斑猫鲨(Leucoraja erinacea)肝脏对锰的摄取和胆汁排泄情况。锰以剂量依赖性方式迅速从离体灌注的小斑猫鲨肝脏的再循环灌注液中被清除;然而,只有一小部分释放到胆汁中(6小时内<2%)。锰也能被新鲜分离的培养小斑猫鲨肝细胞迅速摄取。锰的摄取受到多种二价金属的抑制,但不受铯的抑制。对锰摄取的浓度依赖性分析显示有两个成分,其表观K(m)值分别为1.1±0.1 microM和112±29 microM。高亲和力成分的K(m)值与测得的小斑猫鲨血液锰浓度1.9±0.5 microM相似。当从培养基中去除碳酸氢盐时,锰的摄取减少了近一半,但不受pH从6.5变为8.5的影响,也不受用锂或钾替代钠的影响。肝细胞的锰外流也很快,当用0.5 mM 2,4-二硝基苯酚处理细胞以耗尽ATP水平时,锰外流受到抑制。这些数据表明,小斑猫鲨肝脏具有从肝血窦循环中有效清除锰的机制,而总体胆汁排泄较低,且似乎部分由ATP敏感机制介导。

相似文献

1
Hepatic uptake and biliary excretion of manganese in the little skate, Leucoraja erinacea.
Comp Biochem Physiol C Toxicol Pharmacol. 2009 May;149(4):566-71. doi: 10.1016/j.cbpc.2008.12.009. Epub 2008 Dec 24.
2
Carrier-mediated uptake of lucifer yellow in skate and rat hepatocytes: a fluid-phase marker revisited.
Am J Physiol. 1999 Oct;277(4):G896-904. doi: 10.1152/ajpgi.1999.277.4.G896.
3
Na-taurocholate cotransporting polypeptide (NTCP/SLC10A1) ortholog in the marine skate is not a physiological bile salt transporter.
Am J Physiol Regul Integr Comp Physiol. 2017 Apr 1;312(4):R477-R484. doi: 10.1152/ajpregu.00302.2016. Epub 2017 Jan 11.
4
Bile salt excretion in skate liver is mediated by a functional analog of Bsep/Spgp, the bile salt export pump.
Am J Physiol Gastrointest Liver Physiol. 2000 Jan;278(1):G57-63. doi: 10.1152/ajpgi.2000.278.1.G57.
5
Enterohepatic circulation of scymnol sulfate in an elasmobranch, the little skate (Raja erinacea).
Am J Physiol. 1997 Nov;273(5 Pt 1):G1023-30. doi: 10.1152/ajpgi.1997.273.5.G1023.
7
A volume-activated taurine channel in skate hepatocytes: membrane polarity and role of intracellular ATP.
Am J Physiol. 1994 Aug;267(2 Pt 1):G285-91. doi: 10.1152/ajpgi.1994.267.2.G285.
8
Primitive organization of cytosolic Ca(2+) signals in hepatocytes from the little skate Raja erinacea.
J Exp Biol. 1999 Nov;202(Pt 22):3049-56. doi: 10.1242/jeb.202.22.3049.
9
Taurine transport in skate hepatocytes. I. Uptake and efflux.
Am J Physiol. 1992 Mar;262(3 Pt 1):G445-50. doi: 10.1152/ajpgi.1992.262.3.G445.
10
Taurine transport in skate hepatocytes. II. Volume activation, energy, and sulfhydryl dependence.
Am J Physiol. 1992 Mar;262(3 Pt 1):G451-60. doi: 10.1152/ajpgi.1992.262.3.G451.

引用本文的文献

1
The Regulation of ZIP8 by Dietary Manganese in Mice.
Int J Mol Sci. 2023 Mar 22;24(6):5962. doi: 10.3390/ijms24065962.
3
Non-invasive radionuclide imaging of trace metal trafficking in health and disease: "PET metallomics".
RSC Chem Biol. 2022 Apr 11;3(5):495-518. doi: 10.1039/d2cb00033d. eCollection 2022 May 11.
4
Manganese(II)-Based Responsive Contrast Agent Detects Glucose-Stimulated Zinc Secretion from the Mouse Pancreas and Prostate by MRI.
Inorg Chem. 2021 Feb 15;60(4):2168-2177. doi: 10.1021/acs.inorgchem.0c02688. Epub 2021 Jan 28.
5
Regulation of the Metal Transporters ZIP14 and ZnT10 by Manganese Intake in Mice.
Nutrients. 2019 Sep 4;11(9):2099. doi: 10.3390/nu11092099.
6
Influence of iron metabolism on manganese transport and toxicity.
Metallomics. 2017 Aug 16;9(8):1028-1046. doi: 10.1039/c7mt00079k.
8
Elemental markers in elasmobranchs: effects of environmental history and growth on vertebral chemistry.
PLoS One. 2013 Oct 1;8(10):e62423. doi: 10.1371/journal.pone.0062423. eCollection 2013.

本文引用的文献

1
Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter.
Mol Pharmacol. 2008 May;73(5):1413-23. doi: 10.1124/mol.107.043588. Epub 2008 Feb 12.
3
ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties.
Mol Pharmacol. 2006 Jul;70(1):171-80. doi: 10.1124/mol.106.024521. Epub 2006 Apr 25.
4
Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination.
Biol Res. 2006;39(1):45-57. doi: 10.4067/s0716-97602006000100006.
5
Retention of structural and functional polarity in cultured skate hepatocytes undergoing in vitro morphogenesis.
Comp Biochem Physiol B Biochem Mol Biol. 2006 Jun;144(2):167-79. doi: 10.1016/j.cbpb.2006.02.005. Epub 2006 Mar 6.
6
Manganese neurotoxicity: connecting the dots along the continuum of dysfunction.
Neurotoxicology. 2006 May;27(3):347-9. doi: 10.1016/j.neuro.2005.11.002. Epub 2005 Dec 5.
7
Nutritional aspects of manganese homeostasis.
Mol Aspects Med. 2005 Aug-Oct;26(4-5):353-62. doi: 10.1016/j.mam.2005.07.003.
8
Divalent metal-ion transporter DMT1 mediates both H+ -coupled Fe2+ transport and uncoupled fluxes.
Pflugers Arch. 2006 Jan;451(4):544-58. doi: 10.1007/s00424-005-1494-3. Epub 2005 Aug 10.
9
Manganese toxicity upon overexposure.
NMR Biomed. 2004 Dec;17(8):544-53. doi: 10.1002/nbm.931.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验