Albers Sonja-Verena, Birkeland Nils-Kåre, Driessen Arnold J M, Gertig Susanne, Haferkamp Patrick, Klenk Hans-Peter, Kouril Theresa, Manica Andrea, Pham Trong K, Ruoff Peter, Schleper Christa, Schomburg Dietmar, Sharkey Kieran J, Siebers Bettina, Sierocinski Pawel, Steuer Ralf, van der Oost John, Westerhoff Hans V, Wieloch Patricia, Wright Phillip C, Zaparty Melanie
Molecular Biology of Archaea, Max-Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany.
Biochem Soc Trans. 2009 Feb;37(Pt 1):58-64. doi: 10.1042/BST0370058.
SulfoSYS (Sulfolobus Systems Biology) focuses on the study of the CCM (central carbohydrate metabolism) of Sulfolobus solfataricus and its regulation under temperature variation at the systems level. In Archaea, carbohydrates are metabolized by modifications of the classical pathways known from Bacteria or Eukarya, e.g. the unusual branched ED (Entner-Doudoroff) pathway, which is utilized for glucose degradation in S. solfataricus. This archaeal model organism of choice is a thermoacidophilic crenarchaeon that optimally grows at 80 degrees C (60-92 degrees C) and pH 2-4. In general, life at high temperature requires very efficient adaptation to temperature changes, which is most difficult to deal with for organisms, and it is unclear how biological networks can withstand and respond to such changes. This integrative project combines genomic, transcriptomic, proteomic and metabolomic, as well as kinetic and biochemical information. The final goal of SulfoSYS is the construction of a silicon cell model for this part of the living cell that will enable computation of the CCM network. In the present paper, we report on one of the first archaeal systems biology projects.
硫磺系统生物学(SulfoSYS)专注于在系统层面研究嗜热栖热菌(Sulfolobus solfataricus)的中心碳水化合物代谢(CCM)及其在温度变化下的调控。在古菌中,碳水化合物通过对细菌或真核生物中已知的经典途径进行修饰来代谢,例如用于嗜热栖热菌中葡萄糖降解的不寻常分支型Entner-Doudoroff(ED)途径。这种被选中的古菌模式生物是一种嗜热嗜酸的泉古菌,在80摄氏度(60 - 92摄氏度)和pH值2 - 4的条件下生长最佳。一般来说,在高温下生存需要对温度变化进行非常有效的适应,这对生物体来说是最难应对的,而且尚不清楚生物网络如何承受并响应这种变化。这个综合项目结合了基因组学、转录组学、蛋白质组学和代谢组学以及动力学和生化信息。硫磺系统生物学的最终目标是构建一个针对活细胞这一部分的硅细胞模型,该模型将能够对中心碳水化合物代谢网络进行计算。在本文中,我们报道了首批古菌系统生物学项目之一。