Suppr超能文献

小脑中间神经元活动的谷氨酸能调节由GABA释放增强介导,且需要蛋白激酶A/RIM1α信号传导。

Glutamatergic modulation of cerebellar interneuron activity is mediated by an enhancement of GABA release and requires protein kinase A/RIM1alpha signaling.

作者信息

Lachamp Philippe M, Liu Yu, Liu Siqiong June

机构信息

Department of Biology, Pennsylvania State University, State College, Pennsylvania 16802, USA.

出版信息

J Neurosci. 2009 Jan 14;29(2):381-92. doi: 10.1523/JNEUROSCI.2354-08.2009.

Abstract

Information processing in the CNS is controlled by the activity of neuronal networks composed of principal neurons and interneurons. Activity-dependent modification of synaptic transmission onto principal neurons is well studied, but little is known about the modulation of inhibitory transmission between interneurons. However, synaptic plasticity at this level has clear implications for the generation of synchronized activity. We investigated the molecular mechanism(s) and functional consequences of an activity-induced lasting increase in GABA release that occurs between inhibitory interneurons (stellate cells) in the cerebellum. Using whole-cell recording and cerebellar slices, we found that stimulation of glutamatergic inputs (parallel fibers) with a physiological-like pattern of activity triggered a lasting increase in GABA release from stellate cells. This activity also potentiated inhibitory transmission between synaptically connected interneurons. Extracellular recording revealed that the enhanced inhibitory transmission reduced the firing frequency and altered the pattern of action potential activity in stellate cells. The induction of the sustained increase in GABA release required activation of NMDA receptors. Using pharmacological and genetic approaches, we found that presynaptic cAMP/PKA (protein kinase A) signaling and RIM1alpha, an active zone protein, is the critical pathway that is required for the lasting enhancement of GABA release. Thus, a common mechanism can underlie presynaptic plasticity of both excitatory and inhibitory transmission. This activity-dependent regulation of synaptic transmission between inhibitory interneurons may serve as an important mechanism for interneuronal network plasticity.

摘要

中枢神经系统中的信息处理由由主神经元和中间神经元组成的神经网络的活动控制。对主神经元突触传递的活动依赖性修饰已有充分研究,但对中间神经元之间抑制性传递的调节了解甚少。然而,这一水平的突触可塑性对同步活动的产生具有明确影响。我们研究了小脑抑制性中间神经元(星状细胞)之间活动诱导的GABA释放持续增加的分子机制及其功能后果。使用全细胞记录和小脑切片,我们发现以类似生理活动模式刺激谷氨酸能输入(平行纤维)会引发星状细胞GABA释放的持续增加。这种活动还增强了突触连接的中间神经元之间的抑制性传递。细胞外记录显示,增强的抑制性传递降低了星状细胞的放电频率并改变了动作电位活动模式。GABA释放持续增加的诱导需要NMDA受体的激活。使用药理学和遗传学方法,我们发现突触前cAMP/PKA(蛋白激酶A)信号通路和活性区蛋白RIM1α是GABA释放持续增强所需的关键途径。因此,一种共同机制可能是兴奋性和抑制性传递突触前可塑性的基础。抑制性中间神经元之间这种活动依赖性的突触传递调节可能是中间神经元网络可塑性的重要机制。

相似文献

2
PKG and PKA signaling in LTP at GABAergic synapses.
Neuropsychopharmacology. 2009 Jun;34(7):1829-42. doi: 10.1038/npp.2009.5. Epub 2009 Feb 4.
3
Signaling cascade regulating long-term potentiation of GABA(A) receptor responsiveness in cerebellar Purkinje neurons.
J Neurosci. 2002 May 15;22(10):3969-76. doi: 10.1523/JNEUROSCI.22-10-03969.2002.
4
Biphasic modulation of GABA release from stellate cells by glutamatergic receptor subtypes.
J Neurophysiol. 2007 Jul;98(1):550-6. doi: 10.1152/jn.00352.2007. Epub 2007 May 30.
6
Long-term synaptic plasticity in cerebellar stellate cells.
Cerebellum. 2008;7(4):559-62. doi: 10.1007/s12311-008-0057-5.
8
Neuroligins Are Selectively Essential for NMDAR Signaling in Cerebellar Stellate Interneurons.
J Neurosci. 2016 Aug 31;36(35):9070-83. doi: 10.1523/JNEUROSCI.1356-16.2016.
9
Monoaminergic long-term facilitation of GABA-mediated inhibitory transmission at cerebellar synapses.
Neuroscience. 1999;88(3):871-83. doi: 10.1016/s0306-4522(98)00260-7.
10
NMDA receptors increase the size of GABAergic terminals and enhance GABA release.
J Neurosci. 2005 Feb 23;25(8):2024-31. doi: 10.1523/JNEUROSCI.4980-04.2005.

引用本文的文献

1
Emotional stress increases GluA2 expression and potentiates fear memory via adenylyl cyclase 5.
Cell Rep. 2025 Jan 28;44(1):115180. doi: 10.1016/j.celrep.2024.115180. Epub 2025 Jan 8.
2
A multi-layer mean-field model of the cerebellum embedding microstructure and population-specific dynamics.
PLoS Comput Biol. 2023 Sep 1;19(9):e1011434. doi: 10.1371/journal.pcbi.1011434. eCollection 2023 Sep.
3
Advances in the Electrophysiological Recordings of Long-Term Potentiation.
Int J Mol Sci. 2023 Apr 12;24(8):7134. doi: 10.3390/ijms24087134.
4
Synaptotagmin-7 facilitates acetylcholine release in splanchnic nerve-chromaffin cell synapses during nerve activity.
Neurosci Lett. 2023 Mar 13;800:137129. doi: 10.1016/j.neulet.2023.137129. Epub 2023 Feb 14.
5
GluN2D NMDA Receptors Gate Fear Extinction Learning and Interneuron Plasticity.
Front Synaptic Neurosci. 2021 May 24;13:681068. doi: 10.3389/fnsyn.2021.681068. eCollection 2021.
6
Apremilast regulates acute effects of ethanol and other GABAergic drugs via protein kinase A-dependent signaling.
Neuropharmacology. 2020 Nov 1;178:108220. doi: 10.1016/j.neuropharm.2020.108220. Epub 2020 Jul 29.
7
Diverse Neuron Properties and Complex Network Dynamics in the Cerebellar Cortical Inhibitory Circuit.
Front Mol Neurosci. 2019 Nov 7;12:267. doi: 10.3389/fnmol.2019.00267. eCollection 2019.
8
Complex Electroresponsive Dynamics in Olivocerebellar Neurons Represented With Extended-Generalized Leaky Integrate and Fire Models.
Front Comput Neurosci. 2019 Jun 6;13:35. doi: 10.3389/fncom.2019.00035. eCollection 2019.
9
Circuit-specific control of the medial entorhinal inputs to the dentate gyrus by atypical presynaptic NMDARs activated by astrocytes.
Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13602-13610. doi: 10.1073/pnas.1816013116. Epub 2019 May 31.
10
Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders.
Front Mol Neurosci. 2018 Apr 24;11:132. doi: 10.3389/fnmol.2018.00132. eCollection 2018.

本文引用的文献

1
High-frequency network oscillations in cerebellar cortex.
Neuron. 2008 Jun 12;58(5):763-74. doi: 10.1016/j.neuron.2008.03.030.
2
Learning-related long-term potentiation of inhibitory synapses in the cerebellar cortex.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):769-74. doi: 10.1073/pnas.0706342105. Epub 2008 Jan 9.
3
4
Activation of extrasynaptic NMDA receptors induces a PKC-dependent switch in AMPA receptor subtypes in mouse cerebellar stellate cells.
J Physiol. 2007 Sep 1;583(Pt 2):537-53. doi: 10.1113/jphysiol.2007.136788. Epub 2007 Jun 21.
5
Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1alpha.
Neuron. 2007 Jun 7;54(5):801-12. doi: 10.1016/j.neuron.2007.05.020.
6
RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels.
Nat Neurosci. 2007 Jun;10(6):691-701. doi: 10.1038/nn1904. Epub 2007 May 13.
7
Opioids block long-term potentiation of inhibitory synapses.
Nature. 2007 Apr 26;446(7139):1086-90. doi: 10.1038/nature05726.
8
An NMDA receptor/nitric oxide cascade in presynaptic parallel fiber-Purkinje neuron long-term potentiation.
J Neurosci. 2007 Mar 28;27(13):3408-15. doi: 10.1523/JNEUROSCI.4831-06.2007.
9
Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.
Nat Rev Neurosci. 2007 Jan;8(1):45-56. doi: 10.1038/nrn2044.
10
Local interneurons regulate synaptic strength by retrograde release of endocannabinoids.
J Neurosci. 2006 Sep 27;26(39):9935-43. doi: 10.1523/JNEUROSCI.0958-06.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验