Suppr超能文献

嵌入微观结构和群体特异性动力学的小脑多层均值场模型。

A multi-layer mean-field model of the cerebellum embedding microstructure and population-specific dynamics.

机构信息

Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.

Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.

出版信息

PLoS Comput Biol. 2023 Sep 1;19(9):e1011434. doi: 10.1371/journal.pcbi.1011434. eCollection 2023 Sep.

Abstract

Mean-field (MF) models are computational formalism used to summarize in a few statistical parameters the salient biophysical properties of an inter-wired neuronal network. Their formalism normally incorporates different types of neurons and synapses along with their topological organization. MFs are crucial to efficiently implement the computational modules of large-scale models of brain function, maintaining the specificity of local cortical microcircuits. While MFs have been generated for the isocortex, they are still missing for other parts of the brain. Here we have designed and simulated a multi-layer MF of the cerebellar microcircuit (including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells) and validated it against experimental data and the corresponding spiking neural network (SNN) microcircuit model. The cerebellar MF was built using a system of equations, where properties of neuronal populations and topological parameters are embedded in inter-dependent transfer functions. The model time constant was optimised using local field potentials recorded experimentally from acute mouse cerebellar slices as a template. The MF reproduced the average dynamics of different neuronal populations in response to various input patterns and predicted the modulation of the Purkinje Cells firing depending on cortical plasticity, which drives learning in associative tasks, and the level of feedforward inhibition. The cerebellar MF provides a computationally efficient tool for future investigations of the causal relationship between microscopic neuronal properties and ensemble brain activity in virtual brain models addressing both physiological and pathological conditions.

摘要

平均场 (MF) 模型是一种用于用少数几个统计参数总结互联神经元网络的重要生物物理特性的计算形式。它们的形式通常包含不同类型的神经元和突触,以及它们的拓扑结构。MF 对于有效地实现大脑功能的大规模模型的计算模块至关重要,同时保持局部皮质微电路的特异性。虽然已经为同型皮质生成了 MF,但它们仍然缺少大脑的其他部分。在这里,我们设计并模拟了小脑微电路的多层 MF(包括颗粒细胞、高尔基细胞、分子层中间神经元和浦肯野细胞),并将其与实验数据和相应的尖峰神经网络 (SNN) 微电路模型进行了验证。小脑 MF 是使用一组方程构建的,其中神经元群体的特性和拓扑参数嵌入在相互依赖的传递函数中。该模型的时间常数使用从急性小鼠小脑切片中记录的局部场电位作为模板进行了优化。MF 复制了不同神经元群体对各种输入模式的平均动力学,并预测了浦肯野细胞放电的调制取决于皮质可塑性,这驱动了联想任务中的学习,以及前馈抑制的水平。小脑 MF 为未来在虚拟大脑模型中研究微观神经元特性与整体大脑活动之间的因果关系提供了一种计算效率高的工具,可用于处理生理和病理条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a45/10501640/ca354ecfd299/pcbi.1011434.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验