Suppr超能文献

关于视觉显著性的判别性中心-外周假设的合理性

On the plausibility of the discriminant center-surround hypothesis for visual saliency.

作者信息

Gao Dashan, Mahadevan Vijay, Vasconcelos Nuno

机构信息

Statistical Visual Computing Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, USA.

出版信息

J Vis. 2008 Jun 13;8(7):13.1-18. doi: 10.1167/8.7.13.

Abstract

It has been suggested that saliency mechanisms play a role in perceptual organization. This work evaluates the plausibility of a recently proposed generic principle for visual saliency: that all saliency decisions are optimal in a decision-theoretic sense. The discriminant saliency hypothesis is combined with the classical assumption that bottom-up saliency is a center-surround process to derive a (decision-theoretic) optimal saliency architecture. Under this architecture, the saliency of each image location is equated to the discriminant power of a set of features with respect to the classification problem that opposes stimuli at center and surround. The optimal saliency detector is derived for various stimulus modalities, including intensity, color, orientation, and motion, and shown to make accurate quantitative predictions of various psychophysics of human saliency for both static and motion stimuli. These include some classical nonlinearities of orientation and motion saliency and a Weber law that governs various types of saliency asymmetries. The discriminant saliency detectors are also applied to various saliency problems of interest in computer vision, including the prediction of human eye fixations on natural scenes, motion-based saliency in the presence of ego-motion, and background subtraction in highly dynamic scenes. In all cases, the discriminant saliency detectors outperform previously proposed methods from both the saliency and the general computer vision literatures.

摘要

有人提出,显著性机制在知觉组织中发挥作用。这项工作评估了最近提出的视觉显著性通用原则的合理性:即所有显著性决策在决策理论意义上都是最优的。判别显著性假设与自下而上的显著性是一种中心-周边过程这一经典假设相结合,以推导一种(决策理论)最优显著性架构。在这种架构下,每个图像位置的显著性等同于一组特征相对于区分中心和周边刺激的分类问题的判别能力。针对各种刺激模态,包括强度、颜色、方向和运动,推导了最优显著性检测器,并表明其能对人类在静态和运动刺激下的各种显著性心理物理学做出准确的定量预测。这些包括方向和运动显著性的一些经典非线性以及支配各种类型显著性不对称的韦伯定律。判别显著性检测器还应用于计算机视觉中各种感兴趣的显著性问题,包括预测人眼在自然场景上的注视点、存在自我运动时基于运动的显著性以及高动态场景中的背景减除。在所有情况下,判别显著性检测器在显著性和一般计算机视觉文献方面都优于先前提出的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验