Suppr超能文献

使用广义线性模型和加法模型估计分类图像。

Estimating classification images with generalized linear and additive models.

作者信息

Knoblauch Kenneth, Maloney Laurence T

机构信息

Stem Cell and Brain Research Institute, Département Neurosciences Intégratives, Bron, France.

出版信息

J Vis. 2008 Dec 22;8(16):10.1-19. doi: 10.1167/8.16.10.

Abstract

Conventional approaches to modeling classification image data can be described in terms of a standard linear model (LM). We show how the problem can be characterized as a Generalized Linear Model (GLM) with a Bernoulli distribution. We demonstrate via simulation that this approach is more accurate in estimating the underlying template in the absence of internal noise. With increasing internal noise, however, the advantage of the GLM over the LM decreases and GLM is no more accurate than LM. We then introduce the Generalized Additive Model (GAM), an extension of GLM that can be used to estimate smooth classification images adaptively. We show that this approach is more robust to the presence of internal noise, and finally, we demonstrate that GAM is readily adapted to estimation of higher order (nonlinear) classification images and to testing their significance.

摘要

用于对分类图像数据进行建模的传统方法可以用标准线性模型(LM)来描述。我们展示了如何将该问题表征为具有伯努利分布的广义线性模型(GLM)。我们通过模拟证明,在没有内部噪声的情况下,这种方法在估计基础模板方面更准确。然而,随着内部噪声的增加,GLM相对于LM的优势会降低,并且GLM并不比LM更准确。然后我们引入广义相加模型(GAM),它是GLM的一种扩展,可用于自适应地估计平滑分类图像。我们表明这种方法对内部噪声的存在更具鲁棒性,最后,我们证明GAM很容易适用于高阶(非线性)分类图像的估计及其显著性测试。

相似文献

1
Estimating classification images with generalized linear and additive models.
J Vis. 2008 Dec 22;8(16):10.1-19. doi: 10.1167/8.16.10.
3
Improved classification images with sparse priors in a smooth basis.
J Vis. 2009 Sep 23;9(10):17.1-24. doi: 10.1167/9.10.17.
4
Virtual evolution for visual search in natural images results in behavioral receptive fields with inhibitory surrounds.
Vis Neurosci. 2009 Jan-Feb;26(1):93-108. doi: 10.1017/S0952523809090014. Epub 2009 Mar 12.
5
Classification image weights and internal noise level estimation.
J Vis. 2002;2(1):121-31. doi: 10.1167/2.1.8.
6
Classification images in a very general decision model.
Vision Res. 2016 Jun;123:26-32. doi: 10.1016/j.visres.2016.04.003. Epub 2016 May 13.
7
Detection in fixed and random noise in foveal and parafoveal vision explained by template learning.
J Opt Soc Am A Opt Image Sci Vis. 1999 Mar;16(3):755-63. doi: 10.1364/josaa.16.000755.
8
The empirical characteristics of human pattern vision defy theoretically-driven expectations.
PLoS Comput Biol. 2018 Dec 4;14(12):e1006585. doi: 10.1371/journal.pcbi.1006585. eCollection 2018 Dec.
10
Characterizing human perceptual inefficiencies with equivalent internal noise.
J Opt Soc Am A Opt Image Sci Vis. 1999 Mar;16(3):764-78. doi: 10.1364/josaa.16.000764.

引用本文的文献

5
Propagation and update of auditory perceptual priors through alpha and theta rhythms.
Eur J Neurosci. 2022 Jun;55(11-12):3083-3099. doi: 10.1111/ejn.15141. Epub 2021 Mar 8.
6
Auditory Perceptual History Is Propagated through Alpha Oscillations.
Curr Biol. 2019 Dec 16;29(24):4208-4217.e3. doi: 10.1016/j.cub.2019.10.041. Epub 2019 Nov 21.
7
Modeling second-order boundary perception: A machine learning approach.
PLoS Comput Biol. 2019 Mar 18;15(3):e1006829. doi: 10.1371/journal.pcbi.1006829. eCollection 2019 Mar.
9
Psychophysical reverse correlation reflects both sensory and decision-making processes.
Nat Commun. 2018 Aug 28;9(1):3479. doi: 10.1038/s41467-018-05797-y.
10
Direct Viewing of Dyslexics' Compensatory Strategies in Speech in Noise Using Auditory Classification Images.
PLoS One. 2016 Apr 21;11(4):e0153781. doi: 10.1371/journal.pone.0153781. eCollection 2016.

本文引用的文献

1
Human linear template with mammographic backgrounds estimated with a genetic algorithm.
J Opt Soc Am A Opt Image Sci Vis. 2007 Dec;24(12):B1-12. doi: 10.1364/josaa.24.0000b1.
2
Maximum likelihood difference scaling of image quality in compression-degraded images.
J Opt Soc Am A Opt Image Sci Vis. 2007 Nov;24(11):3418-26. doi: 10.1364/josaa.24.003418.
3
Receptive versus perceptive fields from the reverse-correlation viewpoint.
Vision Res. 2006 Aug;46(16):2465-74. doi: 10.1016/j.visres.2006.02.002. Epub 2006 Mar 20.
4
Accurate statistical tests for smooth classification images.
J Vis. 2005 Oct 5;5(9):659-67. doi: 10.1167/5.9.1.
6
Frequency and phase contributions to the detection of temporal luminance modulation.
J Opt Soc Am A Opt Image Sci Vis. 2005 Oct;22(10):2257-61. doi: 10.1364/josaa.22.002257.
7
Classification images for chromatic signal detection.
J Opt Soc Am A Opt Image Sci Vis. 2005 Oct;22(10):2081-9. doi: 10.1364/josaa.22.002081.
8
Perceptual classification of chromatic modulation.
Vis Neurosci. 2004 May-Jun;21(3):283-9. doi: 10.1017/s0952523804213141.
9
What makes Mona Lisa smile?
Vision Res. 2004;44(13):1493-8. doi: 10.1016/j.visres.2003.11.027.
10
Estimation of nonlinear psychophysical kernels.
J Vis. 2004 Feb 26;4(2):82-91. doi: 10.1167/4.2.2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验