Murray Richard F
Department of Psychology and Centre for Vision Research, York University, 4700 Keele Street, LAS 0009, Toronto, Ontario M3J 1P3, Canada.
Vision Res. 2016 Jun;123:26-32. doi: 10.1016/j.visres.2016.04.003. Epub 2016 May 13.
Most of the theory supporting our understanding of classification images relies on standard signal detection models and the use of normally distributed stimulus noise. Here I show that the most common methods of calculating classification images by averaging stimulus noise samples within stimulus-response classes of trials are much more general than has previously been demonstrated, and that they give unbiased estimates of an observer's template for a wide range of decision rules and non-Gaussian stimulus noise distributions. These results are similar to findings on reverse correlation and related methods in the neurophysiology literature, but here I formulate them in terms that are tailored to signal detection analyses of visual tasks, in order to make them more accessible and useful to visual psychophysicists. I examine 2AFC and yes-no designs. These findings make it possible to use and interpret classification images in tasks where observers' decision strategies may not conform to classic signal detection models such as the difference rule, and in tasks where the stimulus noise is non-Gaussian.
大多数支持我们对分类图像理解的理论依赖于标准信号检测模型以及正态分布刺激噪声的使用。在此我表明,通过在试验的刺激 - 反应类别内对刺激噪声样本进行平均来计算分类图像的最常见方法,比之前所证明的更为通用,并且对于广泛的决策规则和非高斯刺激噪声分布,它们能给出观察者模板的无偏估计。这些结果与神经生理学文献中关于反向相关及相关方法的发现相似,但在此我以适合视觉任务信号检测分析的术语来阐述它们,以使视觉心理物理学家更容易理解和使用。我研究了二择一迫选(2AFC)和是 - 否设计。这些发现使得在观察者的决策策略可能不符合经典信号检测模型(如差异规则)的任务中,以及在刺激噪声为非高斯的任务中,能够使用和解释分类图像。