Suppr超能文献

在酸性条件下胍基乙内酰脲从脒基乙内酰脲形成的机制方面。

Mechanistic aspects of the formation of guanidinohydantoin from spiroiminodihydantoin under acidic conditions.

机构信息

Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.

出版信息

Chem Res Toxicol. 2009 Mar 16;22(3):526-35. doi: 10.1021/tx800402y.

Abstract

Experimentally, it was observed that the oxidized guanine lesion spiroiminodihydantoin (Sp) contained in highly purified oligodeoxynucleotides slowly converts to guanidinohydantoin (Gh). The reaction is accelerated in the presence of acid. The possible mechanisms of this transformation have been analyzed computationally. Specifically, the potential energy surface for formation of Gh from Sp has been mapped using B3LYP density functional theory, the aug-cc-pVTZ and 6-31+G(d,p) basis sets, and the integral equation formalism for the polarizable continuum model (IEF-PCM) solvation model. The results favor a mechanism in which proton-assisted hydration of the C6 carbonyl group forming a gem-diol leads to ring opening of the iminohydantoin ring. The resulting species resembles a beta-ketoacid in its ability to decarboxylate; tautomerization of the resulting enol forms Gh. The results of these studies indicate that incubation of nucleosides or oligonucleotides containing Sp should be avoided in acidic media when high purity or an accurate assessment of the amounts of hydantoin lesions is desired.

摘要

实验观察到,高度纯化的寡脱氧核苷酸中含有的氧化鸟嘌呤损伤螺环亚氨基二氢嘧啶(Sp)会缓慢转化为胍基脲嘧啶(Gh)。在酸存在下,反应会加速。已经通过计算分析了这种转化的可能机制。具体来说,使用 B3LYP 密度泛函理论、aug-cc-pVTZ 和 6-31+G(d,p)基组以及极化连续模型的积分方程形式(IEF-PCM)溶剂模型,绘制了从 Sp 形成 Gh 的势能面。结果支持这样一种机制,即 C6 羰基的质子辅助水合形成偕二醇,导致亚氨基二氢嘧啶环的开环。由此产生的物质在脱羧能力上类似于β-酮酸;生成的烯醇的互变异构形成 Gh。这些研究的结果表明,当需要高纯度或准确评估嘧啶损伤的量时,应避免在酸性介质中孵育含 Sp 的核苷或寡核苷酸。

相似文献

7
RNA polymerase II stalls on oxidative DNA damage via a torsion-latch mechanism involving lone pair-π and CH-π interactions.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9338-9348. doi: 10.1073/pnas.1919904117. Epub 2020 Apr 13.
8
The Nonbulky DNA Lesions Spiroiminodihydantoin and 5-Guanidinohydantoin Significantly Block Human RNA Polymerase II Elongation in Vitro.
Biochemistry. 2017 Jun 20;56(24):3008-3018. doi: 10.1021/acs.biochem.7b00295. Epub 2017 Jun 7.

引用本文的文献

1
Chemistry of ROS-mediated oxidation to the guanine base in DNA and its biological consequences.
Int J Radiat Biol. 2022;98(3):452-460. doi: 10.1080/09553002.2021.2003464. Epub 2021 Nov 21.
3
Formation and repair of oxidatively generated damage in cellular DNA.
Free Radic Biol Med. 2017 Jun;107:13-34. doi: 10.1016/j.freeradbiomed.2016.12.049. Epub 2017 Jan 2.
5
Calculation of the stabilization energies of oxidatively damaged guanine base pairs with guanine.
Molecules. 2012 Jun 1;17(6):6705-15. doi: 10.3390/molecules17066705.
6
Chemical and biological consequences of oxidatively damaged guanine in DNA.
Free Radic Res. 2012 Apr;46(4):420-41. doi: 10.3109/10715762.2011.653968. Epub 2012 Feb 22.
7
Biologically relevant oxidants cause bound proteins to readily oxidatively cross-link at Guanine.
Chem Res Toxicol. 2012 Feb 20;25(2):326-36. doi: 10.1021/tx200376e. Epub 2012 Feb 6.

本文引用的文献

3
Spiroiminodihydantoin as an oxo-atom transfer product of 8-oxo-2'-deoxyguanosine oxidation by chromium(V).
Org Lett. 2007 Oct 25;9(22):4411-4. doi: 10.1021/ol701667t. Epub 2007 Oct 4.
4
Exploration of mechanisms for the transformation of 8-hydroxy guanine radical to FAPyG by density functional theory.
Chem Res Toxicol. 2007 Mar;20(3):432-44. doi: 10.1021/tx060187t. Epub 2007 Feb 23.
5
Ab initio molecular dynamics study of the keto-enol tautomerism of acetone in solution.
Chemphyschem. 2006 Jun 12;7(6):1229-34. doi: 10.1002/cphc.200600007.
6
Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products.
Chem Res Toxicol. 2006 Apr;19(4):491-505. doi: 10.1021/tx0600043.
8
9
Accurate prediction of basicity in aqueous solution with COSMO-RS.
J Comput Chem. 2006 Jan 15;27(1):11-9. doi: 10.1002/jcc.20309.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验