Suppr超能文献

利用分子动力学模拟计算标准结合自由能。

Computations of standard binding free energies with molecular dynamics simulations.

作者信息

Deng Yuqing, Roux Benoît

机构信息

Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois, USA.

出版信息

J Phys Chem B. 2009 Feb 26;113(8):2234-46. doi: 10.1021/jp807701h.

Abstract

An increasing number of studies have reported computations of the standard (absolute) binding free energy of small ligands to proteins using molecular dynamics (MD) simulations and explicit solvent molecules that are in good agreement with experiments. This encouraging progress suggests that physics-based approaches hold the promise of making important contributions to the process of drug discovery and optimization in the near future. Two types of approaches are principally used to compute binding free energies with MD simulations. The most widely known is the alchemical double decoupling method, in which the interaction of the ligand with its surroundings are progressively switched off. It is also possible to use a potential of mean force (PMF) method, in which the ligand is physically separated from the protein receptor. For both of these computational approaches, restraining potentials may be activated and released during the simulation for sampling efficiently the changes in translational, rotational, and conformational freedom of the ligand and protein upon binding. Because such restraining potentials add bias to the simulations, it is important that their effects be rigorously removed to yield a binding free energy that is properly unbiased with respect to the standard state. A review of recent results is presented, and differences in computational methods are discussed. Examples of computations with T4-lysozyme mutants, FKBP12, SH2 domain, and cytochrome P450 are discussed and compared. Remaining difficulties and challenges are highlighted.

摘要

越来越多的研究报告了使用分子动力学(MD)模拟和明确的溶剂分子来计算小配体与蛋白质的标准(绝对)结合自由能,其结果与实验结果高度吻合。这一令人鼓舞的进展表明,基于物理的方法有望在不久的将来为药物发现和优化过程做出重要贡献。主要有两种方法用于通过MD模拟计算结合自由能。最广为人知的是炼金术双去耦方法,其中配体与其周围环境的相互作用会逐渐关闭。也可以使用平均力势(PMF)方法,其中配体从蛋白质受体上物理分离。对于这两种计算方法,在模拟过程中可以激活和释放约束势,以便有效地采样配体和蛋白质结合时平移、旋转和构象自由度的变化。由于这种约束势会给模拟增加偏差,因此重要的是要严格消除它们的影响,以产生相对于标准状态无偏差的结合自由能。本文综述了近期的研究结果,并讨论了计算方法的差异。讨论并比较了用T4-溶菌酶突变体、FKBP12、SH2结构域和细胞色素P450进行计算的例子。强调了仍然存在的困难和挑战。

相似文献

1
Computations of standard binding free energies with molecular dynamics simulations.
J Phys Chem B. 2009 Feb 26;113(8):2234-46. doi: 10.1021/jp807701h.
2
Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials.
Biophys J. 2006 Oct 15;91(8):2798-814. doi: 10.1529/biophysj.106.084301. Epub 2006 Jul 14.
4
Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome.
J Phys Chem B. 2010 Jul 29;114(29):9525-39. doi: 10.1021/jp100579y.
5
CHARMM-GUI Ligand Binder for absolute binding free energy calculations and its application.
J Chem Inf Model. 2013 Jan 28;53(1):267-77. doi: 10.1021/ci300505n. Epub 2012 Dec 20.
6
Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications.
J Chem Theory Comput. 2022 Jun 14;18(6):3873-3893. doi: 10.1021/acs.jctc.1c01194. Epub 2022 Jun 2.
7
Calculation of absolute protein-ligand binding free energy from computer simulations.
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6825-30. doi: 10.1073/pnas.0409005102. Epub 2005 May 2.
8
Protein-Ligand Binding Free Energy Calculations with FEP.
Methods Mol Biol. 2019;2022:201-232. doi: 10.1007/978-1-4939-9608-7_9.

引用本文的文献

1
alchemlyb: the simple alchemistry library.
J Open Source Softw. 2024;9(101). doi: 10.21105/joss.06934. Epub 2024 Sep 26.
2
Thermodynamics and Kinetics of the Deintercalation of a Novel Anthracycline from Double-Stranded Oligonucleotide DNA.
J Phys Chem B. 2025 Aug 21;129(33):8335-8350. doi: 10.1021/acs.jpcb.5c03021. Epub 2025 Aug 12.
3
Binding Free Energy Calculations Based on the Path Collective Variable along a String Pathway.
J Phys Chem B. 2025 Jul 10;129(27):6805-6816. doi: 10.1021/acs.jpcb.5c02258. Epub 2025 Jun 30.
4
Acceleration of the GROMACS Free-Energy Perturbation Calculations on GPUs.
ACS Omega. 2025 May 30;10(22):22858-22873. doi: 10.1021/acsomega.5c00151. eCollection 2025 Jun 10.
7
Neural Network Potential with Multiresolution Approach Enables Accurate Prediction of Reaction Free Energies in Solution.
J Am Chem Soc. 2025 Feb 26;147(8):6835-6856. doi: 10.1021/jacs.4c17015. Epub 2025 Feb 17.
8
A claudin5-binding peptide enhances the permeability of the blood-brain barrier in vitro.
Sci Adv. 2025 Jan 10;11(2):eadq2616. doi: 10.1126/sciadv.adq2616.
9
Optimal Dielectric Boundary for Binding Free Energy Estimates in the Implicit Solvent.
J Chem Inf Model. 2024 Dec 23;64(24):9433-9448. doi: 10.1021/acs.jcim.4c01190. Epub 2024 Dec 10.

本文引用的文献

2
Calculation of Standard Binding Free Energies:  Aromatic Molecules in the T4 Lysozyme L99A Mutant.
J Chem Theory Comput. 2006 Sep;2(5):1255-73. doi: 10.1021/ct060037v.
3
Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
J Chem Theory Comput. 2009 Apr 14;5(4):919-30. doi: 10.1021/ct800445x. Epub 2009 Mar 24.
4
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
7
Binding specificity of SH2 domains: insight from free energy simulations.
Proteins. 2009 Mar;74(4):996-1007. doi: 10.1002/prot.22209.
8
Comment on "Free energy simulations of single and double ion occupancy in gramicidin A" [J. Chem. Phys. 126, 105103 (2007)].
J Chem Phys. 2008 Jun 14;128(22):227101; author reply 227102. doi: 10.1063/1.2931568.
9
Calculation of protein-ligand binding free energy by using a polarizable potential.
Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6290-5. doi: 10.1073/pnas.0711686105. Epub 2008 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验