Pultar Felix, Thürlemann Moritz, Gordiy Igor, Doloszeski Eva, Riniker Sereina
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland.
J Am Chem Soc. 2025 Feb 26;147(8):6835-6856. doi: 10.1021/jacs.4c17015. Epub 2025 Feb 17.
We present the design and implementation of a novel neural network potential (NNP) and its combination with an electrostatic embedding scheme, commonly used within the context of hybrid quantum-mechanical/molecular-mechanical (QM/MM) simulations. Substitution of a computationally expensive QM Hamiltonian by an NNP with the same accuracy largely reduces the computational cost and enables efficient sampling in prospective MD simulations, the main limitation faced by traditional QM/MM setups. The model relies on the recently introduced anisotropic message passing (AMP) formalism to compute atomic interactions and encode symmetries found in QM systems. AMP is shown to be highly efficient in terms of both data and computational costs and can be readily scaled to sample systems involving more than 350 solute and 40,000 solvent atoms for hundreds of nanoseconds using umbrella sampling. Most deviations of AMP predictions from the underlying DFT ground truth lie within chemical accuracy (4.184 kJ mol). The performance and broad applicability of our approach are showcased by calculating the free-energy surface of alanine dipeptide, the preferred ligation states of nickel phosphine complexes, and dissociation free energies of charged pyridine and quinoline dimers. Results with this ML/MM approach show excellent agreement with experimental data and reach chemical accuracy in most cases. In contrast, free energies calculated with static DFT calculations paired with implicit solvent models or QM/MM MD simulations using cheaper semiempirical methods show up to ten times higher deviation from the experimental ground truth and sometimes even fail to reproduce qualitative trends.
我们展示了一种新型神经网络势(NNP)的设计与实现,以及它与静电嵌入方案的结合,这种结合常用于混合量子力学/分子力学(QM/MM)模拟中。用具有相同精度的NNP替代计算成本高昂的QM哈密顿量,在很大程度上降低了计算成本,并能够在前瞻性分子动力学(MD)模拟中进行高效采样,这是传统QM/MM设置面临的主要限制。该模型依赖于最近引入的各向异性消息传递(AMP)形式来计算原子间相互作用,并编码QM系统中发现的对称性。AMP在数据和计算成本方面都显示出高效性,并且可以很容易地进行扩展,以使用伞形采样对包含超过350个溶质和40000个溶剂原子的系统进行数百纳秒的采样。AMP预测与基础密度泛函理论(DFT)真值的大多数偏差都在化学精度(4.184 kJ/mol)范围内。通过计算丙氨酸二肽的自由能表面、镍膦配合物的优选连接状态以及带电吡啶和喹啉二聚体的解离自由能,展示了我们方法的性能和广泛适用性。这种机器学习/分子力学(ML/MM)方法的结果与实验数据显示出极好的一致性,并且在大多数情况下达到了化学精度。相比之下,使用静态DFT计算与隐式溶剂模型配对或使用更便宜的半经验方法进行QM/MM MD模拟计算得到的自由能,与实验真值的偏差高达十倍,有时甚至无法再现定性趋势。