Suppr超能文献

神经回路发育过程中树突分支和突触强度的协同变化。

Coordinated changes in dendritic arborization and synaptic strength during neural circuit development.

作者信息

Peng Yi-Rong, He Shan, Marie Helene, Zeng Si-Yu, Ma Jun, Tan Zhu-Jun, Lee Soo Yeun, Malenka Robert C, Yu Xiang

机构信息

Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

出版信息

Neuron. 2009 Jan 15;61(1):71-84. doi: 10.1016/j.neuron.2008.11.015.

Abstract

Neural circuit development requires concurrent morphological and functional changes. Here, we identify coordinated and inversely correlated changes in dendritic morphology and mEPSC amplitude following increased neural activity. We show that overexpression of beta-catenin, a molecule that increases total dendritic length, mimics the effects of increased neuronal activity by scaling down mEPSC amplitudes, while postsynaptic expression of a protein that sequesters beta-catenin reverses the effects of activity on reducing mEPSC amplitudes. These results were confirmed immunocytochemically as changes in the size and density of surface synaptic AMPA receptor clusters. In individual neurons there was an inverse linear relationship between total dendritic length and average mEPSC amplitude. Importantly, beta-catenin overexpression in vivo promoted dendritic growth and reduced mEPSC amplitudes. Together, these results demonstrate that coordinated changes in dendritic morphology and unitary excitatory synaptic strength may serve as an important intrinsic mechanism that helps prevent neurons from overexcitation during neural circuit development.

摘要

神经回路发育需要形态和功能的同步变化。在此,我们发现神经活动增加后,树突形态和微小兴奋性突触后电流(mEPSC)幅度会发生协同且呈负相关的变化。我们表明,β-连环蛋白的过表达(一种增加树突总长度的分子)通过降低mEPSC幅度来模拟神经元活动增加的效应,而一种隔离β-连环蛋白的蛋白质的突触后表达则逆转了活动对降低mEPSC幅度的影响。这些结果通过免疫细胞化学方法得到证实,表现为表面突触AMPA受体簇的大小和密度的变化。在单个神经元中,树突总长度与平均mEPSC幅度之间存在负线性关系。重要的是,体内β-连环蛋白的过表达促进了树突生长并降低了mEPSC幅度。总之,这些结果表明,树突形态和单一兴奋性突触强度的协同变化可能是一种重要的内在机制,有助于在神经回路发育过程中防止神经元过度兴奋。

相似文献

1
3
An essential postsynaptic role for the ubiquitin proteasome system in slow homeostatic synaptic plasticity in cultured hippocampal neurons.
Neuroscience. 2010 Dec 29;171(4):1016-31. doi: 10.1016/j.neuroscience.2010.09.061. Epub 2010 Oct 1.
4
Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
J Neurochem. 2005 Sep;94(6):1728-38. doi: 10.1111/j.1471-4159.2005.03334.x. Epub 2005 Jul 25.
6
Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors.
J Neurosci. 2001 Aug 15;21(16):6008-17. doi: 10.1523/JNEUROSCI.21-16-06008.2001.
7
Temporally distinct demands for classic cadherins in synapse formation and maturation.
Mol Cell Neurosci. 2004 Dec;27(4):509-21. doi: 10.1016/j.mcn.2004.08.008.
8
Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a.
J Neurosci. 2003 Jul 16;23(15):6327-37. doi: 10.1523/JNEUROSCI.23-15-06327.2003.
9
Mapping homeostatic synaptic plasticity using cable properties of dendrites.
Neuroscience. 2016 Feb 19;315:206-16. doi: 10.1016/j.neuroscience.2015.12.017. Epub 2015 Dec 14.
10
Development regulates a switch between post- and presynaptic strengthening in response to activity deprivation.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10817-22. doi: 10.1073/pnas.0903603106. Epub 2009 Jun 9.

引用本文的文献

3
Identification of a molecular network regulated by multiple ASD high risk genes.
Hum Mol Genet. 2024 Jun 21;33(13):1176-1185. doi: 10.1093/hmg/ddae058.
6
How Are Synapses Born? A Functional and Molecular View of the Role of the Wnt Signaling Pathway.
Int J Mol Sci. 2022 Dec 31;24(1):708. doi: 10.3390/ijms24010708.
7
Exercise improves behavioral dysfunction and inhibits the spontaneous excitatory postsynaptic current of D2-medium spiny neurons.
Front Aging Neurosci. 2022 Dec 1;14:1001256. doi: 10.3389/fnagi.2022.1001256. eCollection 2022.
8
Molecular mechanisms of synaptogenesis.
Front Synaptic Neurosci. 2022 Sep 13;14:939793. doi: 10.3389/fnsyn.2022.939793. eCollection 2022.
10
The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions.
Physiology (Bethesda). 2020 Nov 1;35(6):375-390. doi: 10.1152/physiol.00008.2020.

本文引用的文献

2
Direct measurement of somatic voltage clamp errors in central neurons.
Nat Neurosci. 2008 Jul;11(7):790-8. doi: 10.1038/nn.2137. Epub 2008 Jun 15.
4
Rapid synaptic scaling induced by changes in postsynaptic firing.
Neuron. 2008 Mar 27;57(6):819-26. doi: 10.1016/j.neuron.2008.02.031.
5
Activity-dependent development of callosal projections in the somatosensory cortex.
J Neurosci. 2007 Oct 17;27(42):11334-42. doi: 10.1523/JNEUROSCI.3380-07.2007.
6
beta-Catenin regulates excitatory postsynaptic strength at hippocampal synapses.
Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13479-84. doi: 10.1073/pnas.0702334104. Epub 2007 Aug 6.
7
Homeostatic regulation of intrinsic excitability and synaptic transmission in a developing visual circuit.
J Neurosci. 2007 Aug 1;27(31):8268-77. doi: 10.1523/JNEUROSCI.1738-07.2007.
8
The sequence of events that underlie quantal transmission at central glutamatergic synapses.
Nat Rev Neurosci. 2007 Aug;8(8):597-609. doi: 10.1038/nrn2191.
9
Activity-regulated N-cadherin endocytosis.
Neuron. 2007 Jun 7;54(5):771-85. doi: 10.1016/j.neuron.2007.05.013.
10
Extracellular interactions between GluR2 and N-cadherin in spine regulation.
Neuron. 2007 May 3;54(3):461-77. doi: 10.1016/j.neuron.2007.04.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验