Wilson Richard J
MOAC Centre, University of Warwick, Coventry CV4 7AL, UK.
Biosystems. 2009 May;96(2):121-6. doi: 10.1016/j.biosystems.2008.12.002. Epub 2008 Dec 27.
Conventional kinesin (kinesin-1) is a motor protein that performs a vital function in the eukaryotic cell: it actively transports cargo to required destinations. Kinesin pulls cargo along microtubule tracks using twin linked motor domains (heads) that bind the microtubule, hydrolyse ATP, and alternately step forward. The detail of the kinesin walk has yet to be discovered but a prominent theory is that the mechanism is rectified Brownian motion (RBM) biased by linker zippering. There is evidence that an ATP binding gate coordinates the heads. The hypothesis proposed here is that the gate is unnecessary, that entropic linker strain is sufficient to enable procession. An agent-based computer simulation has been devised to explore head coordination in the RBM model. Walking was found to emerge in silico without a gate to synchronise the heads. Further investigation of the model by applying a range of hindering loads resulted in backstepping or detachment with similar characteristics to behaviour observed in vitro. It is unclear whether kinesin waits at an obstacle but adding an ATP hydrolysis gate to the model in order to force waiting resulted in the model behaving less realistically under load. It is argued here that an RBM model free of gating is a good candidate for explaining kinesin procession.
传统驱动蛋白(驱动蛋白-1)是一种在真核细胞中发挥重要作用的运动蛋白:它能将货物主动运输到所需的目的地。驱动蛋白利用与微管结合、水解ATP并交替向前移动的双连接运动结构域(头部),沿着微管轨道拉动货物。驱动蛋白行走的细节尚未被发现,但一个著名的理论是,其机制是由连接拉链偏向的整流布朗运动(RBM)。有证据表明,一个ATP结合门协调头部。这里提出的假设是,这个门是不必要的,熵连接应变足以实现前进。已设计了一个基于主体的计算机模拟来探索RBM模型中的头部协调。发现在没有门来同步头部的情况下,行走会在计算机模拟中出现。通过施加一系列阻碍负载对模型进行进一步研究,导致了与体外观察到的行为具有相似特征的后退或脱离。目前尚不清楚驱动蛋白是否会在障碍物处等待,但在模型中添加一个ATP水解门以强制等待,会导致模型在负载下的行为不太现实。这里认为,一个没有门控的RBM模型是解释驱动蛋白前进的一个很好的候选模型。