Shang Zhiguo, Zhou Kaifeng, Xu Chen, Csencsits Roseann, Cochran Jared C, Sindelar Charles V
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.
Department of Biology, Brandeis University, Waltham, United States.
Elife. 2014 Nov 21;3:e04686. doi: 10.7554/eLife.04686.
Microtubule-based transport by the kinesin motors, powered by ATP hydrolysis, is essential for a wide range of vital processes in eukaryotes. We obtained insight into this process by developing atomic models for no-nucleotide and ATP states of the monomeric kinesin motor domain on microtubules from cryo-EM reconstructions at 5-6 Å resolution. By comparing these models with existing X-ray structures of ADP-bound kinesin, we infer a mechanistic scheme in which microtubule attachment, mediated by a universally conserved 'linchpin' residue in kinesin (N255), triggers a clamshell opening of the nucleotide cleft and accompanying release of ADP. Binding of ATP re-closes the cleft in a manner that tightly couples to translocation of cargo, via kinesin's 'neck linker' element. These structural transitions are reminiscent of the analogous nucleotide-exchange steps in the myosin and F1-ATPase motors and inform how the two heads of a kinesin dimer 'gate' each other to promote coordinated stepping along microtubules.
由驱动蛋白马达基于微管的运输,由ATP水解提供动力,对于真核生物中广泛的重要过程至关重要。我们通过从5-6埃分辨率的冷冻电镜重建中为微管上的单体驱动蛋白马达结构域的无核苷酸和ATP状态建立原子模型,深入了解了这一过程。通过将这些模型与现有的ADP结合驱动蛋白的X射线结构进行比较,我们推断出一种机制方案,其中由驱动蛋白中普遍保守的“关键”残基(N255)介导的微管附着触发核苷酸裂隙的蛤壳式打开并伴随ADP的释放。ATP的结合以一种紧密耦合到货物转运的方式重新关闭裂隙,通过驱动蛋白的“颈部连接子”元件。这些结构转变让人想起肌球蛋白和F1-ATP酶马达中类似的核苷酸交换步骤,并说明了驱动蛋白二聚体的两个头部如何相互“门控”以促进沿微管的协调步进。