Liu Chengjun, Yang Jian
Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
IEEE Trans Neural Netw. 2009 Feb;20(2):248-57. doi: 10.1109/TNN.2008.2005495. Epub 2008 Oct 7.
This paper presents a novel independent component analysis (ICA) color space method for pattern recognition. The novelty of the ICA color space method is twofold: 1) deriving effective color image representation based on ICA, and 2) implementing efficient color image classification using the independent color image representation and an enhanced Fisher model (EFM). First, the ICA color space method assumes that each color image is defined by three independent source images, which can be derived by means of a blind source separation procedure, such as ICA. Unlike the RGB color space, where the R , G, and B component images are correlated, the new ICA color space method derives three component images C(1) , C(2) , and C(3) that are independent and hence uncorrelated. Second, the three independent color component images are concatenated to form an augmented pattern vector, whose dimensionality is reduced by principal component analysis (PCA). An EFM then derives the discriminating features of the reduced pattern vector for pattern recognition. The effectiveness of the proposed ICA color space method is demonstrated using a complex grand challenge pattern recognition problem and a large scale database. In particular, the face recognition grand challenge (FRGC) and the biometric experimentation environment (BEE) reveal that for the most challenging FRGC version 2 Experiment 4, which contains 12,776 training images, 16,028 controlled target images, and 8014 uncontrolled query images, the ICA color space method achieves the face verification rate (ROC III) of 73.69% at the false accept rate (FAR) of 0.1%, compared to the face verification rate (FVR) of 67.13% of the RGB color space (using the same EFM) and 11.86% of the FRGC baseline algorithm at the same FAR.
本文提出了一种用于模式识别的新型独立成分分析(ICA)颜色空间方法。ICA颜色空间方法的新颖之处体现在两个方面:1)基于ICA推导有效的彩色图像表示;2)使用独立的彩色图像表示和增强型Fisher模型(EFM)实现高效的彩色图像分类。首先,ICA颜色空间方法假设每个彩色图像由三个独立的源图像定义,这可以通过诸如ICA之类的盲源分离过程得出。与RGB颜色空间不同,在RGB颜色空间中R、G和B分量图像是相关的,而新的ICA颜色空间方法得出的三个分量图像C(1)、C(2)和C(3)是独立的,因此是不相关的。其次,将这三个独立的颜色分量图像连接起来形成一个增强模式向量,其维数通过主成分分析(PCA)降低。然后,EFM为模式识别推导降维模式向量的判别特征。使用一个复杂的重大挑战模式识别问题和一个大规模数据库证明了所提出的ICA颜色空间方法的有效性。特别是,人脸识别重大挑战(FRGC)和生物特征实验环境(BEE)表明,对于最具挑战性的FRGC版本2实验4,其中包含12776张训练图像、16028张受控目标图像和8014张不受控查询图像,ICA颜色空间方法在误识率(FAR)为0.1%时实现了73.69%的人脸识别率(ROC III),相比之下,RGB颜色空间(使用相同的EFM)在相同FAR下的人脸识别率(FVR)为67.13%,FRGC基线算法的人脸识别率为11.86%。