Aistrup Gary L, Shiferaw Yohannes, Kapur Sunil, Kadish Alan H, Wasserstrom J Andrew
Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
Circ Res. 2009 Mar 13;104(5):639-49. doi: 10.1161/CIRCRESAHA.108.181909. Epub 2009 Jan 15.
Optical mapping of intact cardiac tissue reveals that, in some cases, intracellular calcium (Ca) release can alternate from one beat to the next in a large-small-large sequence, also referred to as Ca transient (CaT) alternans. CaT alternans can also become spatially phase-mismatched within a single cell, when one part of the cell alternates in a large-small-large sequence, whereas a different part alternates in a small-large-small sequence, a phenomenon known as subcellular discordant alternans. The mechanisms for the formation and spatiotemporal evolution of these phase-mismatched patterns are not known. We used confocal Ca imaging to measure CaT alternans at the sarcomeric level within individual myocytes in the intact rat heart. After a sudden change in cycle length (CL), 2 distinct spatial patterns of CaT alternans emerge. CaTs can form spatially phase-mismatched alternans patterns after the first few beats following the change in CL. The phase mismatch persists for many beats, after which it gradually becomes phase matched via the movement of nodes, which are junctures between phase-mismatched cell regions. In other examples, phase-matched alternans gradually become phase-mismatched, via the formation and movement of nodes. In these examples, we observed large beat-to-beat variations in the cell activation times, despite constant CL pacing. Using computer simulations, we explored the underlying mechanisms for these dynamical phenomena. Our results show how heterogeneity at the sarcomeric level, in conjunction with the dynamics of Ca cycling and membrane voltage, can lead to complex spatiotemporal phenomena within myocytes of the intact heart.
对完整心脏组织的光学映射显示,在某些情况下,细胞内钙(Ca)释放可以在一个大 - 小 - 大序列中从一个搏动交替到下一个搏动,这也被称为钙瞬变(CaT)交替。当细胞的一部分在大 - 小 - 大序列中交替,而另一部分在小 - 大 - 小序列中交替时,CaT交替在单个细胞内也会在空间上出现相位不匹配,这种现象被称为亚细胞不协调交替。这些相位不匹配模式的形成和时空演变机制尚不清楚。我们使用共聚焦钙成像来测量完整大鼠心脏中单个心肌细胞肌节水平的CaT交替。在周期长度(CL)突然改变后,出现了两种不同的CaT交替空间模式。在CL改变后的最初几次搏动后,CaT可以形成空间相位不匹配的交替模式。相位不匹配会持续许多次搏动,之后通过节点(即相位不匹配细胞区域之间的连接点)的移动逐渐变得相位匹配。在其他例子中,相位匹配的交替通过节点的形成和移动逐渐变得相位不匹配。在这些例子中,尽管CL起搏恒定,我们观察到细胞激活时间存在较大的搏动间变化。通过计算机模拟,我们探索了这些动态现象的潜在机制。我们的结果表明,肌节水平的异质性,与钙循环和膜电压的动态变化相结合,如何导致完整心脏心肌细胞内复杂的时空现象。