Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
Peng Cheng Laboratory, Shenzhen, China.
PLoS Comput Biol. 2020 Oct 5;16(10):e1007931. doi: 10.1371/journal.pcbi.1007931. eCollection 2020 Oct.
Biological excitable media, such as cardiac or neural cells and tissue, exhibit memory in which a change in the present excitation may affect the behaviors in the next excitation. For example, a change in calcium (Ca2+) concentration in a cell in the present excitation may affect the Ca2+ dynamics in the next excitation via bi-directional coupling between voltage and Ca2+, forming a delayed feedback loop. Since the Ca2+ dynamics inside the excitable cells are spatiotemporal while the membrane voltage is a global signal, the feedback loop is then a delayed global feedback (DGF) loop. In this study, we investigate the roles of DGF in the genesis and stability of spatiotemporal excitation patterns in periodically-paced excitable media using mathematical models with different levels of complexity: a model composed of coupled FitzHugh-Nagumo units, a 3-dimensional physiologically-detailed ventricular myocyte model, and a coupled map lattice model. We investigate the dynamics of excitation patterns that are temporal period-2 (P2) and spatially concordant or discordant, such as subcellular concordant or discordant Ca2+alternans in cardiac myocytes or spatially concordant or discordant Ca2+ and repolarization alternans in cardiac tissue. Our modeling approach allows both computer simulations and rigorous analytical treatments, which lead to the following results and conclusions. When DGF is absent, concordant and discordant P2 patterns occur depending on initial conditions with the discordant P2 patterns being spatially random. When the DGF is negative, only concordant P2 patterns exist. When the DGF is positive, both concordant and discordant P2 patterns can occur. The discordant P2 patterns are still spatially random, but they satisfy that the global signal exhibits a temporal period-1 behavior. The theoretical analyses of the coupled map lattice model reveal the underlying instabilities and bifurcations for the genesis, selection, and stability of spatiotemporal excitation patterns.
生物兴奋介质,如心脏或神经细胞和组织,表现出记忆性,即当前兴奋的变化可能会影响下一次兴奋的行为。例如,当前兴奋中的细胞内钙离子(Ca2+)浓度的变化可能会通过电压和 Ca2+之间的双向耦合影响下一次兴奋中的 Ca2+动力学,形成延迟反馈环。由于兴奋细胞内的 Ca2+动力学是时空的,而膜电压是全局信号,因此反馈环是延迟全局反馈(DGF)环。在这项研究中,我们使用具有不同复杂程度的数学模型来研究 DGF 在周期性激发的兴奋介质中时空兴奋模式的产生和稳定性中的作用:一个由耦合 FitzHugh-Nagumo 单元组成的模型,一个 3 维生理详细的心室心肌细胞模型,以及一个耦合映射晶格模型。我们研究了时空激发模式的动力学,这些模式具有时间周期-2(P2)和空间一致性或不一致性,例如心脏肌细胞中的亚细胞一致性或不一致性 Ca2+alternans 或心脏组织中的空间一致性或不一致性 Ca2+和复极化 alternans。我们的建模方法允许进行计算机模拟和严格的分析处理,从而得出以下结果和结论。当不存在 DGF 时,根据初始条件会出现一致和不一致的 P2 模式,不一致的 P2 模式具有空间随机性。当 DGF 为负时,仅存在一致的 P2 模式。当 DGF 为正时,既可以出现一致的 P2 模式,也可以出现不一致的 P2 模式。不一致的 P2 模式仍然具有空间随机性,但它们满足全局信号表现出时间周期-1 行为。耦合映射晶格模型的理论分析揭示了时空兴奋模式产生、选择和稳定性的潜在不稳定性和分岔。