Suppr超能文献

大肠杆菌DNA连接酶(LigA)核苷酸转移酶结构域的结构导向突变分析

Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA).

作者信息

Wang Li Kai, Zhu Hui, Shuman Stewart

机构信息

Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA.

出版信息

J Biol Chem. 2009 Mar 27;284(13):8486-94. doi: 10.1074/jbc.M808476200. Epub 2009 Jan 15.

Abstract

NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria, where they are essential for growth and present attractive targets for antimicrobial drug discovery. LigA has a distinctive modular structure in which a nucleotidyltransferase catalytic domain is flanked by an upstream NMN-binding module and by downstream OB-fold, zinc finger, helix-hairpin-helix, and BRCT domains. Here we conducted a structure-function analysis of the nucleotidyltransferase domain of Escherichia coli LigA, guided by the crystal structure of the LigA-DNA-adenylate intermediate. We tested the effects of 29 alanine and conservative mutations at 15 amino acids on ligase activity in vitro and in vivo. We thereby identified essential functional groups that coordinate the reactive phosphates (Arg(136)), contact the AMP adenine (Lys(290)), engage the phosphodiester backbone flanking the nick (Arg(218), Arg(308), Arg(97) plus Arg(101)), or stabilize the active domain fold (Arg(171)). Finer analysis of the mutational effects revealed step-specific functions for Arg(136), which is essential for the reaction of LigA with NAD(+) to form the covalent ligase-AMP intermediate (step 1) and for the transfer of AMP to the nick 5'-PO(4) to form the DNA-adenylate intermediate (step 2) but is dispensable for phosphodiester formation at a preadenylylated nick (step 3).

摘要

NAD(+) 依赖性 DNA 连接酶(LigA)在细菌中普遍存在,对细菌生长至关重要,是抗菌药物研发的有吸引力的靶点。LigA 具有独特的模块化结构,其中核苷酸转移酶催化结构域两侧分别是上游的 NMN 结合模块以及下游的 OB 折叠、锌指、螺旋-发夹-螺旋和 BRCT 结构域。在此,我们以 LigA-DNA-腺苷酸中间体的晶体结构为指导,对大肠杆菌 LigA 的核苷酸转移酶结构域进行了结构-功能分析。我们测试了 15 个氨基酸位点上 29 个丙氨酸突变和保守突变对体外和体内连接酶活性的影响。由此,我们确定了协调反应性磷酸基团的必需功能基团(Arg(136))、与 AMP 腺嘌呤接触的功能基团(Lys(290))、与切口两侧磷酸二酯主链结合的功能基团(Arg(218)、Arg(308)、Arg(97) 加 Arg(101))或稳定活性结构域折叠的功能基团(Arg(171))。对突变效应的更精细分析揭示了 Arg(136) 的步骤特异性功能,它对于 LigA 与 NAD(+) 反应形成共价连接酶-AMP 中间体(步骤 1)以及将 AMP 转移到切口 5'-PO(4) 形成 DNA-腺苷酸中间体(步骤 2)至关重要,但对于在预腺苷酸化切口处形成磷酸二酯(步骤 3)是可有可无的。

相似文献

1
Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA).
J Biol Chem. 2009 Mar 27;284(13):8486-94. doi: 10.1074/jbc.M808476200. Epub 2009 Jan 15.
2
Structure-guided mutational analysis of the nucleotidyltransferase domain of Escherichia coli NAD+-dependent DNA ligase (LigA).
J Biol Chem. 2005 Apr 1;280(13):12137-44. doi: 10.1074/jbc.M413685200. Epub 2005 Jan 24.
3
Structure-guided mutational analysis of the OB, HhH, and BRCT domains of Escherichia coli DNA ligase.
J Biol Chem. 2008 Aug 22;283(34):23343-52. doi: 10.1074/jbc.M802945200. Epub 2008 May 30.
4
Analysis of ligation and DNA binding by Escherichia coli DNA ligase (LigA).
Biochim Biophys Acta. 2005 May 20;1749(1):113-22. doi: 10.1016/j.bbapap.2005.03.003.
5
Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate.
Mol Cell. 2007 Apr 27;26(2):257-71. doi: 10.1016/j.molcel.2007.02.026.
6
Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD-dependent polynucleotide ligases.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2592-2597. doi: 10.1073/pnas.1619220114. Epub 2017 Feb 21.
7
Characterization of mimivirus NAD+-dependent DNA ligase.
Virology. 2006 Sep 15;353(1):133-43. doi: 10.1016/j.virol.2006.04.032. Epub 2006 Jul 14.
8
A second NAD(+)-dependent DNA ligase (LigB) in Escherichia coli.
Nucleic Acids Res. 2001 Dec 15;29(24):4930-4. doi: 10.1093/nar/29.24.4930.
9
Conserved residues in domain Ia are required for the reaction of Escherichia coli DNA ligase with NAD+.
J Biol Chem. 2002 Mar 22;277(12):9695-700. doi: 10.1074/jbc.M111164200. Epub 2002 Jan 7.
10
Kinetic mechanism and fidelity of nick sealing by Escherichia coli NAD+-dependent DNA ligase (LigA).
Nucleic Acids Res. 2016 Mar 18;44(5):2298-309. doi: 10.1093/nar/gkw049. Epub 2016 Feb 8.

引用本文的文献

1
Identification of Novel Inhibitors of DNA Ligase (LigA).
Molecules. 2021 Apr 25;26(9):2508. doi: 10.3390/molecules26092508.
2
Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD-dependent polynucleotide ligases.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2592-2597. doi: 10.1073/pnas.1619220114. Epub 2017 Feb 21.
3
Biochemical and Structural Characterisation of DNA Ligases from Bacteria and Archaea.
Biosci Rep. 2016 Oct 6;36(5):00391. doi: 10.1042/BSR20160003.
4
Kinetic mechanism and fidelity of nick sealing by Escherichia coli NAD+-dependent DNA ligase (LigA).
Nucleic Acids Res. 2016 Mar 18;44(5):2298-309. doi: 10.1093/nar/gkw049. Epub 2016 Feb 8.
6
Mechanistic assessment of DNA ligase as an antibacterial target in Staphylococcus aureus.
Antimicrob Agents Chemother. 2012 Aug;56(8):4095-102. doi: 10.1128/AAC.00215-12. Epub 2012 May 14.

本文引用的文献

1
Structure-guided mutational analysis of the OB, HhH, and BRCT domains of Escherichia coli DNA ligase.
J Biol Chem. 2008 Aug 22;283(34):23343-52. doi: 10.1074/jbc.M802945200. Epub 2008 May 30.
2
Structural basis for nick recognition by a minimal pluripotent DNA ligase.
Nat Struct Mol Biol. 2007 Aug;14(8):770-8. doi: 10.1038/nsmb1266. Epub 2007 Jul 8.
3
Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate.
Mol Cell. 2007 Apr 27;26(2):257-71. doi: 10.1016/j.molcel.2007.02.026.
5
Structure-guided mutational analysis of T4 RNA ligase 1.
RNA. 2006 Dec;12(12):2126-34. doi: 10.1261/rna.271706. Epub 2006 Oct 26.
7
Characterization of mimivirus NAD+-dependent DNA ligase.
Virology. 2006 Sep 15;353(1):133-43. doi: 10.1016/j.virol.2006.04.032. Epub 2006 Jul 14.
8
ATP- and NAD+-dependent DNA ligases share an essential function in the halophilic archaeon Haloferax volcanii.
Mol Microbiol. 2006 Feb;59(3):743-52. doi: 10.1111/j.1365-2958.2005.04975.x.
9
Molecular architecture and ligand recognition determinants for T4 RNA ligase.
J Biol Chem. 2006 Jan 20;281(3):1573-9. doi: 10.1074/jbc.M509658200. Epub 2005 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验