Unciuleac Mihaela-Carmen, Goldgur Yehuda, Shuman Stewart
Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065.
Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2592-2597. doi: 10.1073/pnas.1619220114. Epub 2017 Feb 21.
Polynucleotide ligases comprise a ubiquitous superfamily of nucleic acid repair enzymes that join 3'-OH and 5'-PO DNA or RNA ends. Ligases react with ATP or NAD and a divalent cation cofactor to form a covalent enzyme-(lysine-Nζ)-adenylate intermediate. Here, we report crystal structures of the founding members of the ATP-dependent RNA ligase family (T4 RNA ligase 1; Rnl1) and the NAD-dependent DNA ligase family ( LigA), captured as their respective Michaelis complexes, which illuminate distinctive catalytic mechanisms of the lysine adenylylation reaction. The 2.2-Å Rnl1•ATP•(Mg) structure highlights a two-metal mechanism, whereby: a ligase-bound "catalytic" Mg(HO) coordination complex lowers the p of the lysine nucleophile and stabilizes the transition state of the ATP α phosphate; a second octahedral Mg coordination complex bridges the β and γ phosphates; and protein elements unique to Rnl1 engage the γ phosphate and associated metal complex and orient the pyrophosphate leaving group for in-line catalysis. By contrast, the 1.55-Å LigA•NAD•Mg structure reveals a one-metal mechanism in which a ligase-bound Mg(HO) complex lowers the lysine p and engages the NAD α phosphate, but the β phosphate and the nicotinamide nucleoside of the nicotinamide mononucleotide (NMN) leaving group are oriented solely via atomic interactions with protein elements that are unique to the LigA clade. The two-metal versus one-metal dichotomy demarcates a branchpoint in ligase evolution and favors LigA as an antibacterial drug target.
多核苷酸连接酶构成了一个普遍存在的核酸修复酶超家族,可连接3'-OH和5'-PO的DNA或RNA末端。连接酶与ATP或NAD以及二价阳离子辅因子反应,形成共价的酶 - (赖氨酸 - Nζ) - 腺苷酸中间体。在此,我们报告了ATP依赖性RNA连接酶家族(T4 RNA连接酶1;Rnl1)和NAD依赖性DNA连接酶家族(LigA)的创始成员的晶体结构,它们以各自的米氏复合物形式被捕获,这揭示了赖氨酸腺苷酸化反应独特的催化机制。2.2 Å的Rnl1•ATP•(Mg)结构突出了双金属机制,即:连接酶结合的“催化”Mg(HO)配位复合物降低了赖氨酸亲核试剂的pKa并稳定了ATP α磷酸的过渡态;第二个八面体Mg配位复合物桥接β和γ磷酸;Rnl1特有的蛋白质元件与γ磷酸和相关金属复合物结合,并使焦磷酸离去基团定向以进行线性催化。相比之下,1.55 Å的LigA•NAD•Mg结构揭示了单金属机制,其中连接酶结合的Mg(HO)复合物降低了赖氨酸的pKa并与NAD α磷酸结合,但β磷酸和烟酰胺单核苷酸(NMN)离去基团的烟酰胺核苷仅通过与LigA进化枝特有的蛋白质元件的原子相互作用来定向。双金属与单金属的二分法划分了连接酶进化中的一个分支点,并支持将LigA作为抗菌药物靶点。