Suppr超能文献

一种新颖的关键锁定机制,用于在氨基酸神经递质穿过细胞外空间时使其失活。

A novel key-lock mechanism for inactivating amino acid neurotransmitters during transit across extracellular space.

机构信息

Center for Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.

出版信息

Amino Acids. 2010 Jan;38(1):51-5. doi: 10.1007/s00726-009-0232-0. Epub 2009 Jan 17.

Abstract

There are two kinds of neurotransmissions that occur in brain. One is neuron to neuron at synapses, and the other is neuron to glia via extracellular fluid (ECF), both of which are important for maintenance of proper neuronal functioning. For neuron to neuron communications, several potent amino acid neurotransmitters are used within the confines of synaptic space. However, their presence at elevated concentrations in extra-synaptic space could be detrimental to well organized neuronal functioning. The significance of the synthesis and release of N-acetylaspartylglutamate (NAAG) by neurons has long been a puzzle since glutamate (Glu) itself is the "key" that can interact with all Glu receptors on membranes of all cells. Nonetheless, neurons synthesize this acetylated dipeptide, which cannot be catabolized by neurons, and release it to ECF where its specific physiological target is the Glu metabotropic receptor 3 on the surface of astrocytes. Since Glu is excitotoxic at elevated concentrations, it is proposed that formation and release of NAAG by neurons allows large quantities of Glu to be transported in ECF without the risk of injurious excitotoxic effects. The metabolic mechanism used by neurons is a key-lock system to detoxify Glu during its intercellular transit. This is accomplished by first synthesizing N-acetylaspartate (NAA), and then joining this molecule via a peptide bond to Glu. In this paper, a hypothesis is presented that neurons synthesize a variety of relatively nontoxic peptides and peptide derivatives, including NAA, NAAG, homocarnosine (gamma-aminobutyrylhistidine) and carnosine (beta-alanylhistidine) from potent excitatory and inhibitory amino acids for the purpose of releasing them to ECF to function as cell-specific neuron-to-glia neurotransmitters.

摘要

脑内存在两种神经递质传递方式。一种是突触间神经元到神经元的传递,另一种是通过细胞外液(extracellular fluid,ECF)的神经元到神经胶质细胞的传递,这两种传递对于维持正常的神经元功能都很重要。对于神经元到神经元的通讯,在突触空间内使用了几种有效的氨基酸神经递质。然而,它们在突触外空间中以升高的浓度存在可能对组织良好的神经元功能有害。神经元合成和释放 N-乙酰天冬氨酸谷氨酸盐(N-acetylaspartylglutamate,NAAG)的意义长期以来一直是一个谜,因为谷氨酸(glutamate,Glu)本身就是可以与所有细胞的膜上的所有 Glu 受体相互作用的“钥匙”。尽管如此,神经元合成这种乙酰化二肽,而神经元本身不能代谢这种二肽,并将其释放到 ECF 中,其特定的生理靶标是星形胶质细胞表面的 Glu 代谢型受体 3。由于 Glu 在升高的浓度下具有兴奋性毒性,因此有人提出,神经元形成和释放 NAAG 允许大量 Glu 在 ECF 中转运,而不会有有害的兴奋性毒性作用的风险。神经元使用的代谢机制是一种关键锁系统,可在细胞间转运过程中解毒 Glu。这是通过首先合成 N-乙酰天冬氨酸(N-acetylaspartate,NAA),然后通过肽键将该分子与 Glu 结合来实现的。在本文中,提出了一个假设,即神经元从有效的兴奋性和抑制性氨基酸合成各种相对无毒的肽和肽衍生物,包括 NAA、NAAG、同型瓜氨酸(γ-氨基丁酸酰组氨酸)和肌肽(β-丙氨酸酰组氨酸),并将其释放到 ECF 中,作为细胞特异性的神经元-神经胶质递质发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验