Suppr超能文献

Proteolytic cleavage sites in smooth muscle myosin-light-chain kinase and their relation to structural and regulatory domains.

作者信息

Pearson R B, Ito M, Morrice N A, Smith A J, Condron R, Wettenhall R E, Kemp B E, Hartshorne D J

机构信息

St. Vincent's Institute of Medical Research, Fitzroy, Australia.

出版信息

Eur J Biochem. 1991 Sep 15;200(3):723-30. doi: 10.1111/j.1432-1033.1991.tb16237.x.

Abstract

Proteolysis of the smooth muscle myosin-light-chain kinase with either thermolysin or endoproteinase Lys-C cleaves the enzyme towards the amino-terminus between the first and second unc domains, unc-II-1 and unc-II-2, and in the calmodulin-binding domain. The thermolytic fragment extends 532 residues from Ser275 to Ala806 and is resistant to further digestion. It is catalytically inactive and does not bind calmodulin. Further proteolysis of the thermolytic fragment with trypsin generates a constitutively active fragment. Digestion with endoproteinase Lys-C initially results in an inactive fragment of 516 residues, Ala287 to Lys802. Further digestion with Lys-C endoproteinase results in a constitutively active 474-residue fragment with the same amino-terminus, but a carboxyl-terminus at Lys760, near Arg762, the last conserved residue of protein kinase catalytic domains. There is no cleavage in the acidic-residue-rich connecting peptide between the amino-terminus of the catalytic domain and the unc-I domain, nor within the unc-II or unc-I domains or between the adjacent unc-II-2 and unc-I domains. The pattern of cleavages by these proteases reflects well the predicted domain structure of the myosin-light-chain kinase and further delineates the regulatory pseudosubstrate region. A synthetic peptide corresponding to the pseudosubstrate sequence, MLCK(787-807) was a more potent inhibitor by three orders of magnitude than the overlapping peptide MLCK(777-793) proposed by Ikebe et al. (1989) [Ikebe, M., Maruta, S. & Reardon, S. (1989) J. Biol. Chem. 264, 6967-6971] to be important in autoregulation of the myosin-light-chain kinase.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验