Zhou Changjie, Xue Qikun, Jia Jinfeng, Zhan Huahan, Kang Junyong
Department of Physics, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China.
J Chem Phys. 2009 Jan 14;130(2):024701. doi: 10.1063/1.3046682.
Identical-sized Zn nanoclusters have been grown on Si(111)-(7x7) surfaces at room temperature. In situ scanning tunneling microscopy (STM) studies and first-principles total energy calculations show that room-temperature grown Zn nanoclusters tend to form the seven-Zn-atom structure with one excess Zn atom occupying characteristically the center of the cluster. The evolution of the surface electronic structures measured by scanning tunneling spectroscopy reveals that the formation of Zn nanoclusters is responsible for the saturation of the metallic Si adatom dangling bond states at about -0.3 and +0.5 V and causes the semiconducting characteristics of the nanoclusters. Furthermore, the Zn nanocluster in a faulted half unit cell empties the filled surface dangling bond state of the closest edge Si adatoms in the nearest neighboring uncovered unfaulted half unit cells at about -0.3 V, leading to the suppressed height of the closest edge Si adatoms in the filled-state STM images.
在室温下,已在Si(111)-(7x7)表面生长出尺寸相同的锌纳米团簇。原位扫描隧道显微镜(STM)研究和第一性原理总能量计算表明,室温下生长的锌纳米团簇倾向于形成由七个锌原子组成的结构,其中一个额外的锌原子占据团簇的特征中心。通过扫描隧道光谱测量的表面电子结构的演变表明,锌纳米团簇的形成导致了金属硅吸附原子悬空键态在约-0.3 V和+0.5 V处的饱和,并导致了纳米团簇的半导体特性。此外,在有缺陷的半个晶胞中的锌纳米团簇在约-0.3 V时清空了最近相邻未覆盖的无缺陷半个晶胞中最接近边缘的硅吸附原子的填充表面悬空键态,导致在填充态STM图像中最接近边缘的硅吸附原子的高度受到抑制。